At least half of the leapfrog fullerene graphs have exponentially many Hamilton cycles
A fullerene graph is a 3-connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the trucation of the dual of the given graph. A fullerene graph is leapfrog if it can be obtained from another fullerene graph by the leapfrog transformat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fullerene graph is a 3-connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the trucation of the dual of the given graph. A fullerene graph is leapfrog if it can be obtained from another fullerene graph by the leapfrog transformation. We prove that leapfrog fullerene graphs on \(n=12k-6\) vertices have at least \(2^{k}\) Hamilton cycles. |
---|---|
ISSN: | 2331-8422 |