At least half of the leapfrog fullerene graphs have exponentially many Hamilton cycles

A fullerene graph is a 3-connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the trucation of the dual of the given graph. A fullerene graph is leapfrog if it can be obtained from another fullerene graph by the leapfrog transformat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Kardoš, František, Mockovčiaková, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fullerene graph is a 3-connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the trucation of the dual of the given graph. A fullerene graph is leapfrog if it can be obtained from another fullerene graph by the leapfrog transformation. We prove that leapfrog fullerene graphs on \(n=12k-6\) vertices have at least \(2^{k}\) Hamilton cycles.
ISSN:2331-8422