A-769662 activates AMPK [beta]^sub 1^-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle
5'-AMP-activated protein kinase (AMPK) regulates several aspects of metabolism. Recently, A-769662 was shown to activate AMPK in skeletal muscle. However, no biological effects of AMPK activation by A-769662 in this tissue have been reported. We hypothesized that A-769662 would increase glucose...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology: Cell Physiology 2009-10, Vol.297 (4), p.C1041 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 5'-AMP-activated protein kinase (AMPK) regulates several aspects of metabolism. Recently, A-769662 was shown to activate AMPK in skeletal muscle. However, no biological effects of AMPK activation by A-769662 in this tissue have been reported. We hypothesized that A-769662 would increase glucose uptake in skeletal muscle. We studied incubated soleus and extensor digitorum longus (EDL) muscles from 129S6/sv and C57BL/6 mice. Glucose uptake increased only in soleus from 129S6/sv when concentrations of A-769662 were 500 ...M (...15%, P < 0.05) and 1 mM (...60%, P < 0.01). AMPK β...- but not β...- containing complexes were dose dependently activated by A-769662 in muscles from both genotypes ( 100% at 200 ...M and 300-600% at 1 mM). The discrepancy between the A-769662-induced AMPK activation pattern and stimulation of glucose uptake suggested that these effects were unrelated. A-769662 increased phosphorylation of Akt in both muscles from both genotypes, with phosphorylation of T308 being significantly higher in soleus than in EDL in 129S6/ sv mice (P < 0.01). In soleus from 129S6/sv mice, insulin receptor substrate 1-associated phosphatidylinositol 3 (PI3)-kinase activity was markedly increased with A-769662, and Akt phosphorylation and glucose uptake were inhibited by wortmannin while phosphorylation of acetyl-CoA carboxylase (S227) was unaffected. Thus, A-769662 activates β-containing AMPK complexes in skeletal muscle but induces glucose uptake through a PI3-kinase-dependent pathway. Although development of A-769662 has constituted a step forward in the search for AMPK activators targeting specific AMPK trimers, our data suggest that in intact muscle, A-769662 has off-target effects. This may limit use of A-769662 to study the role of AMPK in skeletal muscle metabolism. (ProQuest: ... denotes formulae/symbols omitted.) |
---|---|
ISSN: | 0363-6143 1522-1563 |