Mechanism of v-Src- and mitogen-activated protein kinase-induced reduction of gap junction communication

Connexin (Cx)43 gap junction channels are phosphorylated by numerous protein kinases, with the net effect typically being a reduction in gap junction communication (GJC). This reduction must result from a decrease in channel open probability, unitary conductance, or permselectivity, because previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2003-02, Vol.53 (2), p.C511-C520
Hauptverfasser: COTTRELL, G. Trevor, RUI LIN, WARN-CRAMER, Bonnie J, LAU, Alan F, BURT, Janis M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Connexin (Cx)43 gap junction channels are phosphorylated by numerous protein kinases, with the net effect typically being a reduction in gap junction communication (GJC). This reduction must result from a decrease in channel open probability, unitary conductance, or permselectivity, because previous results suggest that channel number is unaffected. Coexpression of v-Src with wild-type Cx43 (Cx43-wt) but not Cx43 with tyrosine to phenylalanine substitutions at 247 and 265 (Cx43-Y247,265F) resulted in reduced electrical and dye coupling but no change in single-channel amplitudes. EGF treatment of cells expressing Cx43-wt but not Cx43 with serine to alanine substitutions at 255, 279, and 282 (Cx43-S255,279,282A) resulted in reduced GJC, also with no change in single-channel amplitude. Dye coupling was reduced to a far greater extent than electrical coupling, suggesting that channel selectivity was also altered but with minimal effect on unitary conductance. The absence of Src- and MAPK-induced reductions in single-channel amplitude suggests that the decreases in GJC induced by these kinases result from reduced channel open probability and possibly altered selectivity.
ISSN:0363-6143
1522-1563