Frequent itemset mining: A 25 years review

Frequent itemset mining (FIM) is an essential task within data analysis since it is responsible for extracting frequently occurring events, patterns, or items in data. Insights from such pattern analysis offer important benefits in decision‐making processes. However, algorithmic solutions for mining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Data mining and knowledge discovery 2019-11, Vol.9 (6), p.e1329-n/a
Hauptverfasser: Luna, José María, Fournier‐Viger, Philippe, Ventura, Sebastián
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Frequent itemset mining (FIM) is an essential task within data analysis since it is responsible for extracting frequently occurring events, patterns, or items in data. Insights from such pattern analysis offer important benefits in decision‐making processes. However, algorithmic solutions for mining such kind of patterns are not straightforward since the computational complexity exponentially increases with the number of items in data. This issue, together with the significant memory consumption that is present in the mining process, makes it necessary to propose extremely efficient solutions. Since the FIM problem was first described in the early 1990s, multiple solutions have been proposed by considering centralized systems as well as parallel (shared or nonshared memory) architectures. Solutions can also be divided into exhaustive search and nonexhaustive search models. Many of such approaches are extensions of other solutions and it is therefore necessary to analyze how this task has been considered during the last decades. This article is categorized under: Algorithmic Development > Association Rules Technologies > Association Rules Frequent itemset mining algorithms proposed over last 25 years.
ISSN:1942-4787
1942-4795
DOI:10.1002/widm.1329