5G Experimental Trials for Ultra-Reliable and Low Latency Communications Using New Frame Structure
The fifth generation mobile communications (5G) systems will need to support the ultra-reliable and low-latency communications (URLLC) to enable future mission-critical applications, e.g., self-driving cars and remote control. With the aim of verifying the feasibility of URLLC related 5G requirement...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2019/02/01, Vol.E102.B(2), pp.381-390 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fifth generation mobile communications (5G) systems will need to support the ultra-reliable and low-latency communications (URLLC) to enable future mission-critical applications, e.g., self-driving cars and remote control. With the aim of verifying the feasibility of URLLC related 5G requirements in real environments, field trials of URLLC using a new frame structure are conducted in Yokohama, Japan. In this paper, we present the trial results and investigate the impact of the new frame structure and retransmission method on the URLLC performance. To reduce the user-plane latency and improve the packet success probability, a wider subcarrier spacing, self-contained frame structure, and acknowledgement/negative acknowledgement-less (ACK/NACK-less) retransmission are adopted. We verify the feasibility of URLLC in actual field tests using our prototype test-bed while implementing these techniques. The results show that for the packet size of 32 bytes the URLLC related requirements defined by the 3GPP are satisfied even at low signal-to-noise ratios or at non-line-of-sight transmission. |
---|---|
ISSN: | 0916-8516 1745-1345 |
DOI: | 10.1587/transcom.2018EBP3019 |