Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries
An in-situ and controllable redox deposition method has been applied to prepare binder-free MnO2 nanosheet array-decorated carbon paper as negative electrode for vanadium redox flow batteries (VRFB). Electrochemical performance of electrode depends on amount and uniform distribution of MnO2 on carbo...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2019-11, Vol.322, p.134754, Article 134754 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An in-situ and controllable redox deposition method has been applied to prepare binder-free MnO2 nanosheet array-decorated carbon paper as negative electrode for vanadium redox flow batteries (VRFB). Electrochemical performance of electrode depends on amount and uniform distribution of MnO2 on carbon paper, which were controlled by solution pH, KMnO4 concentration, and deposition time. Modified carbon paper (CPA-05-30) with a uniform MnO2 nanosheet coating layer was obtained in 0.05 M KMnO4 + 0.5 M H2SO4 solution for 30 min. CPA-05-30 presents the most excellent electrocatalytic performance for V3+/V2+ redox reaction. On CPA-05-30, charge transfer and diffusion processes for V3+/V2+ redox reaction are accelerated as a result of MnO2 nanosheet with high catalytic activity and excellent hydrophilcity. Therefore, loading MnO2 on carbon paper improves electrochemical activity V3+/V2+ redox reaction. Moreover, in charge-discharge test, the cell using CPA-05-30 as negative electrode shows higher discharge capacity and better capacity retention at 50 mA cm−2 for 50 cycles in comparison with pristine cell. It indicates that MnO2 nanosheet can efficiently increase electrolyte utilization. At 100 mA cm−2, energy efficiency of the cell using CPA-05-30 is 66.4%, which is 6.0% higher than that of pristine cell. MnO2 nanosheet decorated carbon paper shows excellent electrochemical properties for energy storage application, which evidences its potential application in VRFB.
[Display omitted] |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2019.134754 |