Multiple Symbol Differential Detection Scheme for IEEE 802.15.4 BPSK Receivers

A simple and novel multiple-symbol differential detection (MSDD) scheme is proposed for IEEE 802.15.4 binary phase shift keying (BPSK) receivers. The detection is initiated by estimating and compensating the carrier frequency offset (CFO) effect in the chip sample of interest. With these new statist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2018/11/01, Vol.E101.A(11), pp.1975-1979
Hauptverfasser: ZHANG, Gaoyuan, WEN, Hong, WANG, Longye, ZENG, Xiaoli, TANG, Jie, LIAO, Runfa, SONG, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple and novel multiple-symbol differential detection (MSDD) scheme is proposed for IEEE 802.15.4 binary phase shift keying (BPSK) receivers. The detection is initiated by estimating and compensating the carrier frequency offset (CFO) effect in the chip sample of interest. With these new statistics, the decisions are jointly made by allowing the observation window length to be longer than two bit intervals. Simulation results demonstrate that detection reliability of the IEEE 802.15.4 BPSK receivers is significantly improved. Namely, at packet error rate (PER) of 1×10-3, the signal-to-noise ratio (SNR) gap between ideal coherent detection (perfect carrier reference phase and no CFO) with differential decoding and conventional optimal single differential coherent detection (SDCD) is filled by 2.1dB when the observation window length is set to 6bit intervals. Then, the benefit that less energy consumed by retransmissions is successfully achieved.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.E101.A.1975