Toward Finite-Runtime Card-Based Protocol for Generating a Hidden Random Permutation without Fixed Points

In the research area of card-based secure computation, one of the long-standing open problems is a problem proposed by Crépeau and Kilian at CRYPTO 1993. This is to develop an efficient protocol using a deck of physical cards that generates uniformly at random a permutation with no fixed points (cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2018/09/01, Vol.E101.A(9), pp.1503-1511
Hauptverfasser: HASHIMOTO, Yuji, NUIDA, Koji, SHINAGAWA, Kazumasa, INAMURA, Masaki, HANAOKA, Goichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the research area of card-based secure computation, one of the long-standing open problems is a problem proposed by Crépeau and Kilian at CRYPTO 1993. This is to develop an efficient protocol using a deck of physical cards that generates uniformly at random a permutation with no fixed points (called a derangement), where the resulting permutation must be secret against the parties in the protocol. All the existing protocols for the problem have a common issue of lacking a guarantee to halt within a finite number of steps. In this paper, we investigate feasibility and infeasibility for the problem where both a uniformly random output and a finite runtime is required. First, we propose a way of reducing the original problem, which is to sample a uniform distribution over an inefficiently large set of the derangements, to another problem of sampling a non-uniform distribution but with a significantly smaller underlying set. This result will be a base of a new approach to the problem. On the other hand, we also give (assuming the abc conjecture), under a certain formal model, an asymptotic lower bound of the number of cards for protocols solving the problem using uniform shuffles only. This result would give a supporting evidence for the necessity of dealing with non-uniform distributions such as in the aforementioned first part of our result.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.E101.A.1503