Early diabetes as a model for testing the regulation of juxtaglomerular NOS I
Dysregulation of kidney nitric oxide synthase (NOS) I may alter renal hemodynamics in diabetes. Four types of studies were performed in anesthetized 1- to 2-wk-streptozotocin diabetic rats. 1) Glomerular filtration rate (GFR) was measured before and during NOS I blockade. Subsequent addition of nons...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Renal physiology 2004-10, Vol.56 (4), p.F732-F738 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dysregulation of kidney nitric oxide synthase (NOS) I may alter renal hemodynamics in diabetes. Four types of studies were performed in anesthetized 1- to 2-wk-streptozotocin diabetic rats. 1) Glomerular filtration rate (GFR) was measured before and during NOS I blockade. Subsequent addition of nonspecific NOS blocker tested for residual NO from other isoforms. Acute systemic NOS I blockade reduced GFR only in diabetics. Nonspecific NOS blockade had no additional effect on NOS I-blocked diabetics. 2) Renal blood flow (RBF) was monitored for evidence that tubuloglomerular feedback (TGF) resets during 1 h of continuous activation with benzolamide. NOS I blockade was added to test for the role of NOS I in TGF resetting. During 1 h of TGF activation in controls, RBF initially declined and then returned to baseline. In diabetic and NOS I-blocked rats, RBF declined and remained low. 3) The ability of NOS I blockade to increase the homeostatic efficiency of TGF in diabetes was tested by micropuncture in free-flowing nephrons. The addition of NOS I blocker to the tubular fluid increased TGF efficiency in control and diabetic rats. 4) The influence of distal salt delivery on local NOS I activity was tested by micropuncture. Henle's loop was perfused at varying rates with NOS I blocker while single-nephron GFR (SNGFR) from the late proximal tubule was measured. In controls, NOS I blockade mainly reduced SNGFR when flow through Henle's loop was high. In diabetics, NOS I blockade reduced SNGFR independently of flow through Henle's loop. In conclusion, normally, salt delivered to the macula densa (MD) exerts immediate control over MD NOS I activity. In diabetes, there is ongoing overactivity of NOS I that is not regulated by MD salt. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1931-857X 1522-1466 |