Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells

Gain/loss of function studies were utilized to assess the potential role of the endogenous vanilloid receptor TRPV4 as a sensor of flow and osmolality in M-1 collecting duct cells (CCD). TRPV4 mRNA and protein were detectable in M-1 cells and stably transfected HEK-293 cells, where the protein occur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2007-11, Vol.293 (5), p.F1699-F1713
Hauptverfasser: Wu, Ling, Gao, Xiaochong, Brown, Rachel C, Heller, Stefan, O'Neil, Roger G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gain/loss of function studies were utilized to assess the potential role of the endogenous vanilloid receptor TRPV4 as a sensor of flow and osmolality in M-1 collecting duct cells (CCD). TRPV4 mRNA and protein were detectable in M-1 cells and stably transfected HEK-293 cells, where the protein occurred as a glycosylated doublet on Western blots. Immunofluorescence imaging demonstrated expression of TRPV4 at the cell membranes of TRPV4-transfected HEK and M-1 cells and at the luminal membrane of mouse kidney CCD. By using intracellular calcium imaging techniques, calcium influx was monitored in cells grown on coverslips. Application of known activators of TRPV4, including 4alpha-PDD and hypotonic medium, induced strong calcium influx in M-1 cells and TRPV4-transfected HEK-293 cells but not in nontransfected cells. Applying increased flow/shear stress in a parallel plate chamber induced calcium influx in both M-1 and TRPV4-transfected HEK cells but not in nontransfected HEK cells. Furthermore, in loss-of-function studies employing small interference (si)RNA knockdown techniques, transfection of both M-1 and TRPV4-transfected HEK cells with siRNA specific for TRPV4, but not an inappropriate siRNA, led to a time-dependent decrease in TRPV4 expression that was accompanied by a loss of stimuli-induced calcium influx to flow and hypotonicity. It is concluded that TRPV4 displays a mechanosensitive nature with activation properties consistent with a molecular sensor of both fluid flow (or shear stress) and osmolality, or a component of a sensor complex, in flow-sensitive renal CCD.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00462.2006