Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds
We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2019-09, Vol.60 (5), p.911-915 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 915 |
---|---|
container_issue | 5 |
container_start_page | 911 |
container_title | Siberian mathematical journal |
container_volume | 60 |
creator | Oskorbin, D. N. Rodionov, E. D. |
description | We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions. |
doi_str_mv | 10.1134/S0037446619050136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2301133394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301133394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gejTJzWRmllKsfxXBKi6HTHKnTYmZmrQLXfkQPqFP4pQKLsTVXZzvOxcOIcecnXIO8mzKGBRSKsUrljMOaocMeF5AVgnFdslgE2ebfJ8cpLRgjDOmqgG5eXDGODrtvFt1IVEdLL113rswo2OH3ibaBXqJAaP27h0tHek5hq-Pz2ftvTZzeqeDa7sePCR7rfYJj37ukDyNLx5HV9nk_vJ6dD7JDHC1ykrFFbZC2wKakiPwAo02TcFtXiiLqmHaCtXKxpRCaZsLqMrWIAgJpdRVDkNysu1dxu51jWlVL7p1DP3LWgDr1wCoZE_xLWVil1LEtl5G96LjW81ZvZms_jNZ74itk3o2zDD-Nv8vfQMDB21m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301133394</pqid></control><display><type>article</type><title>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Oskorbin, D. N. ; Rodionov, E. D.</creator><creatorcontrib>Oskorbin, D. N. ; Rodionov, E. D.</creatorcontrib><description>We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446619050136</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Coordinates ; Einstein equations ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Solitary waves</subject><ispartof>Siberian mathematical journal, 2019-09, Vol.60 (5), p.911-915</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</citedby><cites>FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446619050136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446619050136$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Oskorbin, D. N.</creatorcontrib><creatorcontrib>Rodionov, E. D.</creatorcontrib><title>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.</description><subject>Coordinates</subject><subject>Einstein equations</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Solitary waves</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gejTJzWRmllKsfxXBKi6HTHKnTYmZmrQLXfkQPqFP4pQKLsTVXZzvOxcOIcecnXIO8mzKGBRSKsUrljMOaocMeF5AVgnFdslgE2ebfJ8cpLRgjDOmqgG5eXDGODrtvFt1IVEdLL113rswo2OH3ibaBXqJAaP27h0tHek5hq-Pz2ftvTZzeqeDa7sePCR7rfYJj37ukDyNLx5HV9nk_vJ6dD7JDHC1ykrFFbZC2wKakiPwAo02TcFtXiiLqmHaCtXKxpRCaZsLqMrWIAgJpdRVDkNysu1dxu51jWlVL7p1DP3LWgDr1wCoZE_xLWVil1LEtl5G96LjW81ZvZms_jNZ74itk3o2zDD-Nv8vfQMDB21m</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Oskorbin, D. N.</creator><creator>Rodionov, E. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</title><author>Oskorbin, D. N. ; Rodionov, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coordinates</topic><topic>Einstein equations</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oskorbin, D. N.</creatorcontrib><creatorcontrib>Rodionov, E. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oskorbin, D. N.</au><au>Rodionov, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>60</volume><issue>5</issue><spage>911</spage><epage>915</epage><pages>911-915</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446619050136</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2019-09, Vol.60 (5), p.911-915 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2301133394 |
source | SpringerLink Journals - AutoHoldings |
subjects | Coordinates Einstein equations Manifolds (mathematics) Mathematics Mathematics and Statistics Riemann manifold Solitary waves |
title | Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ricci%20Solitons%20and%20Killing%20Fields%20on%20Generalized%20Cahen%E2%80%94Wallach%20Manifolds&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Oskorbin,%20D.%20N.&rft.date=2019-09-01&rft.volume=60&rft.issue=5&rft.spage=911&rft.epage=915&rft.pages=911-915&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446619050136&rft_dat=%3Cproquest_cross%3E2301133394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301133394&rft_id=info:pmid/&rfr_iscdi=true |