Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds

We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2019-09, Vol.60 (5), p.911-915
Hauptverfasser: Oskorbin, D. N., Rodionov, E. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 915
container_issue 5
container_start_page 911
container_title Siberian mathematical journal
container_volume 60
creator Oskorbin, D. N.
Rodionov, E. D.
description We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.
doi_str_mv 10.1134/S0037446619050136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2301133394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301133394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gejTJzWRmllKsfxXBKi6HTHKnTYmZmrQLXfkQPqFP4pQKLsTVXZzvOxcOIcecnXIO8mzKGBRSKsUrljMOaocMeF5AVgnFdslgE2ebfJ8cpLRgjDOmqgG5eXDGODrtvFt1IVEdLL113rswo2OH3ibaBXqJAaP27h0tHek5hq-Pz2ftvTZzeqeDa7sePCR7rfYJj37ukDyNLx5HV9nk_vJ6dD7JDHC1ykrFFbZC2wKakiPwAo02TcFtXiiLqmHaCtXKxpRCaZsLqMrWIAgJpdRVDkNysu1dxu51jWlVL7p1DP3LWgDr1wCoZE_xLWVil1LEtl5G96LjW81ZvZms_jNZ74itk3o2zDD-Nv8vfQMDB21m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301133394</pqid></control><display><type>article</type><title>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Oskorbin, D. N. ; Rodionov, E. D.</creator><creatorcontrib>Oskorbin, D. N. ; Rodionov, E. D.</creatorcontrib><description>We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446619050136</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Coordinates ; Einstein equations ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Solitary waves</subject><ispartof>Siberian mathematical journal, 2019-09, Vol.60 (5), p.911-915</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</citedby><cites>FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446619050136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446619050136$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Oskorbin, D. N.</creatorcontrib><creatorcontrib>Rodionov, E. D.</creatorcontrib><title>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.</description><subject>Coordinates</subject><subject>Einstein equations</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Solitary waves</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gejTJzWRmllKsfxXBKi6HTHKnTYmZmrQLXfkQPqFP4pQKLsTVXZzvOxcOIcecnXIO8mzKGBRSKsUrljMOaocMeF5AVgnFdslgE2ebfJ8cpLRgjDOmqgG5eXDGODrtvFt1IVEdLL113rswo2OH3ibaBXqJAaP27h0tHek5hq-Pz2ftvTZzeqeDa7sePCR7rfYJj37ukDyNLx5HV9nk_vJ6dD7JDHC1ykrFFbZC2wKakiPwAo02TcFtXiiLqmHaCtXKxpRCaZsLqMrWIAgJpdRVDkNysu1dxu51jWlVL7p1DP3LWgDr1wCoZE_xLWVil1LEtl5G96LjW81ZvZms_jNZ74itk3o2zDD-Nv8vfQMDB21m</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Oskorbin, D. N.</creator><creator>Rodionov, E. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</title><author>Oskorbin, D. N. ; Rodionov, E. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8616ef2ad73b81e317ecacb71d576de6b0ad26f4bc826ad52398fce324384a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coordinates</topic><topic>Einstein equations</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oskorbin, D. N.</creatorcontrib><creatorcontrib>Rodionov, E. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oskorbin, D. N.</au><au>Rodionov, E. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>60</volume><issue>5</issue><spage>911</spage><epage>915</epage><pages>911-915</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446619050136</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2019-09, Vol.60 (5), p.911-915
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2301133394
source SpringerLink Journals - AutoHoldings
subjects Coordinates
Einstein equations
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Riemann manifold
Solitary waves
title Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ricci%20Solitons%20and%20Killing%20Fields%20on%20Generalized%20Cahen%E2%80%94Wallach%20Manifolds&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Oskorbin,%20D.%20N.&rft.date=2019-09-01&rft.volume=60&rft.issue=5&rft.spage=911&rft.epage=915&rft.pages=911-915&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446619050136&rft_dat=%3Cproquest_cross%3E2301133394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301133394&rft_id=info:pmid/&rfr_iscdi=true