Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds

We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2019-09, Vol.60 (5), p.911-915
Hauptverfasser: Oskorbin, D. N., Rodionov, E. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446619050136