On Ramond Decorations
We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture mu...
Gespeichert in:
Veröffentlicht in: | Commun.Math.Phys 2019-10, Vol.371 (1), p.145-157 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We impose constraints on the odd coordinates of super-Teichmüller space in the uniformization picture for the monodromies around Ramond punctures, thus reducing the overall odd dimension to be compatible with that of the moduli spaces of super Riemann surfaces. Namely, the monodromy of a puncture must be a true parabolic element of the canonical subgroup
S
L
(
2
,
R
)
of
OSp
(1|2). |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-019-03424-5 |