ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT

This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2018-06, Vol.230, p.35-47
Hauptverfasser: NGUYEN, HOP D., VU, THANH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 35
container_title Nagoya mathematical journal
container_volume 230
creator NGUYEN, HOP D.
VU, THANH
description This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$ -module $M$ , each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$ .
doi_str_mv 10.1017/nmj.2017.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300618628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_nmj_2017_1</cupid><sourcerecordid>2300618628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-2baddab12a7ae3cadbd9d38ad45fa37a94459d60f60881610481ab01737c40573</originalsourceid><addsrcrecordid>eNptkMFOg0AQhjdGE7F68QlIvBnB2V3YXY6IICRYTEWTnjYLC6ZESl3ag28vtU28eJo_mS__TD6ErjG4GDC_X_edS6bg4hNkEewThwmPnCILgHCHMwrn6GIcOwAQNKAWIsXcLtPYDl-Xzy9lUWaR_RCn4XtWLOwi-V3l2TwOF1m5tB_jJI7KS3TWqs-xuTrOGXpL4jJKnbx4yqIwd2pKydYhldJaVZgorhpaK13pQFOhtOe3inIVeJ4faAYtAyEww-AJrKrpd8prD3xOZ-jm0Lsxw9euGbeyG3ZmPZ2UhAIwLBgRE3V7oGozjKNpWrkxq16Zb4lB7p3IyYncO5F4gu-OsOors9IfzV_nP_gPT7xcnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300618628</pqid></control><display><type>article</type><title>ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT</title><source>Cambridge University Press Journals Complete</source><creator>NGUYEN, HOP D. ; VU, THANH</creator><creatorcontrib>NGUYEN, HOP D. ; VU, THANH</creatorcontrib><description>This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$ -module $M$ , each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$ .</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/nmj.2017.1</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Asymptotic properties ; Defects ; Linearity</subject><ispartof>Nagoya mathematical journal, 2018-06, Vol.230, p.35-47</ispartof><rights>2017 by The Editorial Board of the Nagoya Mathematical Journal</rights><rights>2017 by The Editorial Board of theNagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-2baddab12a7ae3cadbd9d38ad45fa37a94459d60f60881610481ab01737c40573</citedby><cites>FETCH-LOGICAL-c332t-2baddab12a7ae3cadbd9d38ad45fa37a94459d60f60881610481ab01737c40573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0027763017000010/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>NGUYEN, HOP D.</creatorcontrib><creatorcontrib>VU, THANH</creatorcontrib><title>ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Math. J</addtitle><description>This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$ -module $M$ , each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$ .</description><subject>Algebra</subject><subject>Asymptotic properties</subject><subject>Defects</subject><subject>Linearity</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkMFOg0AQhjdGE7F68QlIvBnB2V3YXY6IICRYTEWTnjYLC6ZESl3ag28vtU28eJo_mS__TD6ErjG4GDC_X_edS6bg4hNkEewThwmPnCILgHCHMwrn6GIcOwAQNKAWIsXcLtPYDl-Xzy9lUWaR_RCn4XtWLOwi-V3l2TwOF1m5tB_jJI7KS3TWqs-xuTrOGXpL4jJKnbx4yqIwd2pKydYhldJaVZgorhpaK13pQFOhtOe3inIVeJ4faAYtAyEww-AJrKrpd8prD3xOZ-jm0Lsxw9euGbeyG3ZmPZ2UhAIwLBgRE3V7oGozjKNpWrkxq16Zb4lB7p3IyYncO5F4gu-OsOors9IfzV_nP_gPT7xcnQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>NGUYEN, HOP D.</creator><creator>VU, THANH</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>201806</creationdate><title>ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT</title><author>NGUYEN, HOP D. ; VU, THANH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-2baddab12a7ae3cadbd9d38ad45fa37a94459d60f60881610481ab01737c40573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Asymptotic properties</topic><topic>Defects</topic><topic>Linearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NGUYEN, HOP D.</creatorcontrib><creatorcontrib>VU, THANH</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NGUYEN, HOP D.</au><au>VU, THANH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Math. J</addtitle><date>2018-06</date><risdate>2018</risdate><volume>230</volume><spage>35</spage><epage>47</epage><pages>35-47</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$ -module $M$ , each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/nmj.2017.1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 2018-06, Vol.230, p.35-47
issn 0027-7630
2152-6842
language eng
recordid cdi_proquest_journals_2300618628
source Cambridge University Press Journals Complete
subjects Algebra
Asymptotic properties
Defects
Linearity
title ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20ASYMPTOTIC%20BEHAVIOR%20OF%20THE%20LINEARITY%20DEFECT&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=NGUYEN,%20HOP%20D.&rft.date=2018-06&rft.volume=230&rft.spage=35&rft.epage=47&rft.pages=35-47&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/nmj.2017.1&rft_dat=%3Cproquest_cross%3E2300618628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300618628&rft_id=info:pmid/&rft_cupid=10_1017_nmj_2017_1&rfr_iscdi=true