ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT
This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved tha...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 2018-06, Vol.230, p.35-47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work concerns the linearity defect of a module
$M$
over a Noetherian local ring
$R$
, introduced by Herzog and Iyengar in 2005, and denoted
$\text{ld}_{R}M$
. Roughly speaking,
$\text{ld}_{R}M$
is the homological degree beyond which the minimal free resolution of
$M$
is linear. It is proved that for any ideal
$I$
in a regular local ring
$R$
and for any finitely generated
$R$
-module
$M$
, each of the sequences
$(\text{ld}_{R}(I^{n}M))_{n}$
and
$(\text{ld}_{R}(M/I^{n}M))_{n}$
is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence
$(\text{ld}_{R}C_{n})_{n}$
where
$C$
is a finitely generated graded module over a standard graded algebra over
$R$
. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/nmj.2017.1 |