ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT

This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2018-06, Vol.230, p.35-47
Hauptverfasser: NGUYEN, HOP D., VU, THANH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$ , introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$ . Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$ -module $M$ , each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$ .
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2017.1