A DESCENT THEOREM FOR FORMAL SMOOTHNESS
We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu r...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 2018-03, Vol.229, p.113-140 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | Nagoya mathematical journal |
container_volume | 229 |
creator | MAJADAS, JAVIER |
description | We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications. |
doi_str_mv | 10.1017/nmj.2016.64 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300604010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_nmj_2016_64</cupid><sourcerecordid>2300604010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</originalsourceid><addsrcrecordid>eNptkM1qg0AYRYfSQm3aVV9A6KKLov3mx3FmKdbUgkaIdj2YcSyRGtMxWeTtqyTQTReXuzncCwehRww-Bhy-7vrOJ4C5z9kVcggOiMcFI9fIASChF3IKt-huHDsAEFRSBz1H7ltSxsmqcqs0KdZJ7i6L9Zw8ytwyL4oqXSVleY9u2vp7NA-XXqDPZVLFqZcV7x9xlHmaATl4LTAWaiFJy0ETQQODQ9rgpjaMQiuYNEzztjFhAxrkRgQSdM2N1MQIboSgC_R03t3b4edoxoPqhqPdTZeKUAAODDBM1MuZ0nYYR2tatbfbvrYnhUHNJtRkQs0mFGcT7V3out_YbfNl_kb_438BZFJaVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300604010</pqid></control><display><type>article</type><title>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</title><source>Cambridge University Press Journals Complete</source><creator>MAJADAS, JAVIER</creator><creatorcontrib>MAJADAS, JAVIER</creatorcontrib><description>We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/nmj.2016.64</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Descent ; Homology ; Homomorphisms ; Intersections ; Set theory ; Smoothness ; Theorems</subject><ispartof>Nagoya mathematical journal, 2018-03, Vol.229, p.113-140</ispartof><rights>2016 by The Editorial Board of the Nagoya Mathematical Journal</rights><rights>2016 by The Editorial Board of theNagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</citedby><cites>FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0027763016000647/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>MAJADAS, JAVIER</creatorcontrib><title>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Math. J</addtitle><description>We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</description><subject>Algebra</subject><subject>Descent</subject><subject>Homology</subject><subject>Homomorphisms</subject><subject>Intersections</subject><subject>Set theory</subject><subject>Smoothness</subject><subject>Theorems</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkM1qg0AYRYfSQm3aVV9A6KKLov3mx3FmKdbUgkaIdj2YcSyRGtMxWeTtqyTQTReXuzncCwehRww-Bhy-7vrOJ4C5z9kVcggOiMcFI9fIASChF3IKt-huHDsAEFRSBz1H7ltSxsmqcqs0KdZJ7i6L9Zw8ytwyL4oqXSVleY9u2vp7NA-XXqDPZVLFqZcV7x9xlHmaATl4LTAWaiFJy0ETQQODQ9rgpjaMQiuYNEzztjFhAxrkRgQSdM2N1MQIboSgC_R03t3b4edoxoPqhqPdTZeKUAAODDBM1MuZ0nYYR2tatbfbvrYnhUHNJtRkQs0mFGcT7V3out_YbfNl_kb_438BZFJaVg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>MAJADAS, JAVIER</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</title><author>MAJADAS, JAVIER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Descent</topic><topic>Homology</topic><topic>Homomorphisms</topic><topic>Intersections</topic><topic>Set theory</topic><topic>Smoothness</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAJADAS, JAVIER</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAJADAS, JAVIER</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Math. J</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>229</volume><spage>113</spage><epage>140</epage><pages>113-140</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/nmj.2016.64</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-7630 |
ispartof | Nagoya mathematical journal, 2018-03, Vol.229, p.113-140 |
issn | 0027-7630 2152-6842 |
language | eng |
recordid | cdi_proquest_journals_2300604010 |
source | Cambridge University Press Journals Complete |
subjects | Algebra Descent Homology Homomorphisms Intersections Set theory Smoothness Theorems |
title | A DESCENT THEOREM FOR FORMAL SMOOTHNESS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DESCENT%20THEOREM%20FOR%20FORMAL%20SMOOTHNESS&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=MAJADAS,%20JAVIER&rft.date=2018-03-01&rft.volume=229&rft.spage=113&rft.epage=140&rft.pages=113-140&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/nmj.2016.64&rft_dat=%3Cproquest_cross%3E2300604010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300604010&rft_id=info:pmid/&rft_cupid=10_1017_nmj_2016_64&rfr_iscdi=true |