A DESCENT THEOREM FOR FORMAL SMOOTHNESS

We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2018-03, Vol.229, p.113-140
1. Verfasser: MAJADAS, JAVIER
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue
container_start_page 113
container_title Nagoya mathematical journal
container_volume 229
creator MAJADAS, JAVIER
description We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.
doi_str_mv 10.1017/nmj.2016.64
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300604010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_nmj_2016_64</cupid><sourcerecordid>2300604010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</originalsourceid><addsrcrecordid>eNptkM1qg0AYRYfSQm3aVV9A6KKLov3mx3FmKdbUgkaIdj2YcSyRGtMxWeTtqyTQTReXuzncCwehRww-Bhy-7vrOJ4C5z9kVcggOiMcFI9fIASChF3IKt-huHDsAEFRSBz1H7ltSxsmqcqs0KdZJ7i6L9Zw8ytwyL4oqXSVleY9u2vp7NA-XXqDPZVLFqZcV7x9xlHmaATl4LTAWaiFJy0ETQQODQ9rgpjaMQiuYNEzztjFhAxrkRgQSdM2N1MQIboSgC_R03t3b4edoxoPqhqPdTZeKUAAODDBM1MuZ0nYYR2tatbfbvrYnhUHNJtRkQs0mFGcT7V3out_YbfNl_kb_438BZFJaVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300604010</pqid></control><display><type>article</type><title>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</title><source>Cambridge University Press Journals Complete</source><creator>MAJADAS, JAVIER</creator><creatorcontrib>MAJADAS, JAVIER</creatorcontrib><description>We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/nmj.2016.64</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Descent ; Homology ; Homomorphisms ; Intersections ; Set theory ; Smoothness ; Theorems</subject><ispartof>Nagoya mathematical journal, 2018-03, Vol.229, p.113-140</ispartof><rights>2016 by The Editorial Board of the Nagoya Mathematical Journal</rights><rights>2016 by The Editorial Board of theNagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</citedby><cites>FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0027763016000647/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>MAJADAS, JAVIER</creatorcontrib><title>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Math. J</addtitle><description>We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</description><subject>Algebra</subject><subject>Descent</subject><subject>Homology</subject><subject>Homomorphisms</subject><subject>Intersections</subject><subject>Set theory</subject><subject>Smoothness</subject><subject>Theorems</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkM1qg0AYRYfSQm3aVV9A6KKLov3mx3FmKdbUgkaIdj2YcSyRGtMxWeTtqyTQTReXuzncCwehRww-Bhy-7vrOJ4C5z9kVcggOiMcFI9fIASChF3IKt-huHDsAEFRSBz1H7ltSxsmqcqs0KdZJ7i6L9Zw8ytwyL4oqXSVleY9u2vp7NA-XXqDPZVLFqZcV7x9xlHmaATl4LTAWaiFJy0ETQQODQ9rgpjaMQiuYNEzztjFhAxrkRgQSdM2N1MQIboSgC_R03t3b4edoxoPqhqPdTZeKUAAODDBM1MuZ0nYYR2tatbfbvrYnhUHNJtRkQs0mFGcT7V3out_YbfNl_kb_438BZFJaVg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>MAJADAS, JAVIER</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180301</creationdate><title>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</title><author>MAJADAS, JAVIER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f0447c892f60c2835e173d1dae430f849e4c6fde7d0c09b8590ca6e9c2e86e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Descent</topic><topic>Homology</topic><topic>Homomorphisms</topic><topic>Intersections</topic><topic>Set theory</topic><topic>Smoothness</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAJADAS, JAVIER</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAJADAS, JAVIER</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DESCENT THEOREM FOR FORMAL SMOOTHNESS</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Math. J</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>229</volume><spage>113</spage><epage>140</epage><pages>113-140</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/nmj.2016.64</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 2018-03, Vol.229, p.113-140
issn 0027-7630
2152-6842
language eng
recordid cdi_proquest_journals_2300604010
source Cambridge University Press Journals Complete
subjects Algebra
Descent
Homology
Homomorphisms
Intersections
Set theory
Smoothness
Theorems
title A DESCENT THEOREM FOR FORMAL SMOOTHNESS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DESCENT%20THEOREM%20FOR%20FORMAL%20SMOOTHNESS&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=MAJADAS,%20JAVIER&rft.date=2018-03-01&rft.volume=229&rft.spage=113&rft.epage=140&rft.pages=113-140&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/nmj.2016.64&rft_dat=%3Cproquest_cross%3E2300604010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300604010&rft_id=info:pmid/&rft_cupid=10_1017_nmj_2016_64&rfr_iscdi=true