A DESCENT THEOREM FOR FORMAL SMOOTHNESS

We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2018-03, Vol.229, p.113-140
1. Verfasser: MAJADAS, JAVIER
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a descent result for formal smoothness having interesting applications: we deduce that quasiexcellence descends along flat local homomorphisms of finite type, we greatly improve Kunz’s characterization of regular local rings by means of the Frobenius homomorphisms as well as André and Radu relativization of this result, etc. In the second part of the paper, we study a similar question for the complete intersection property instead of formal smoothness, giving also some applications.
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2016.64