AT MOST 64 LINES ON SMOOTH QUARTIC SURFACES (CHARACTERISTIC 2)

Let $k$ be a field of characteristic $2$ . We give a geometric proof that there are no smooth quartic surfaces $S\subset \mathbb{P}_{k}^{3}$ with more than 64 lines (predating work of Degtyarev which improves this bound to 60). We also exhibit a smooth quartic containing 60 lines which thus attains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2018-12, Vol.232, p.76-95
Hauptverfasser: RAMS, SŁAWOMIR, SCHÜTT, MATTHIAS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $k$ be a field of characteristic $2$ . We give a geometric proof that there are no smooth quartic surfaces $S\subset \mathbb{P}_{k}^{3}$ with more than 64 lines (predating work of Degtyarev which improves this bound to 60). We also exhibit a smooth quartic containing 60 lines which thus attains the record in characteristic $2$ .
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2017.21