Multilevel Thresholding Color Image Segmentation Using a Modified Artificial Bee Colony Algorithm

In this paper, a multilevel thresholding color image segmentation method is proposed using a modified Artificial Bee Colony(ABC) algorithm. In this work, in order to improve the local search ability of ABC algorithm, Krill Herd algorithm is incorporated into its onlooker bees phase. The proposed alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2018/08/01, Vol.E101.D(8), pp.2064-2071
Hauptverfasser: ZHANG, Sipeng, JIANG, Wei, SATOH, Shin'ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a multilevel thresholding color image segmentation method is proposed using a modified Artificial Bee Colony(ABC) algorithm. In this work, in order to improve the local search ability of ABC algorithm, Krill Herd algorithm is incorporated into its onlooker bees phase. The proposed algorithm is named as Krill herd-inspired modified Artificial Bee Colony algorithm (KABC algorithm). Experiment results verify the robustness of KABC algorithm, as well as its improvement in optimizing accuracy and convergence speed. In this work, KABC algorithm is used to solve the problem of multilevel thresholding for color image segmentation. To deal with luminance variation, rather than using gray scale histogram, a HSV space-based pre-processing method is proposed to obtain 1D feature vector. KABC algorithm is then applied to find thresholds of the feature vector. At last, an additional local search around the quasi-optimal solutions is employed to improve segmentation accuracy. In this stage, we use a modified objective function which combines Structural Similarity Index Matrix (SSIM) with Kapur's entropy. The pre-processing method, the global optimization with KABC algorithm and the local optimization stage form the whole color image segmentation method. Experiment results show enhance in accuracy of segmentation with the proposed method.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2017EDP7183