Approximate solutions in set-valued optimization problems with applications to maximal monotone operators
This paper is devoted to the study of efficient elements for set-valued maps. We propose two new notions of relative weak ϵ -efficient element and strict relative weak ϵ -efficient element of set-valued maps and provide new necessary optimality conditions for the proposed concepts. We provide existe...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2020-09, Vol.24 (4), p.779-797 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to the study of efficient elements for set-valued maps. We propose two new notions of relative weak
ϵ
-efficient element and strict relative weak
ϵ
-efficient element of set-valued maps and provide new necessary optimality conditions for the proposed concepts. We provide existence results for efficient elements. The critical ingredients for the existence results for efficient elements are the well-known separation arguments and Fan’s lemma. As an application of the existence results, we derive relationships between the efficiency concepts and the local optimizers of certain optimization problems. |
---|---|
ISSN: | 1385-1292 1572-9281 |
DOI: | 10.1007/s11117-019-00707-y |