Generalized Gerstewitz’s Functions and Vector Variational Principle for ϵ-Efficient Solutions in the Sense of Németh

In this paper, we first generalize Gerstewitz’s functions from a single positive vector to a subset of the positive cone. Then, we establish a partial order principle, which is indeed a variant of the pre-order principle [Qiu, J. H.: A pre-order principle and set-valued Ekeland variational principle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2019-03, Vol.35 (3), p.297-320
1. Verfasser: Qiu, Jing Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first generalize Gerstewitz’s functions from a single positive vector to a subset of the positive cone. Then, we establish a partial order principle, which is indeed a variant of the pre-order principle [Qiu, J. H.: A pre-order principle and set-valued Ekeland variational principle. J. Math. Anal. Appl. , 419 , 904–937 (2014)]. By using the generalized Gerstewitz’s functions and the partial order principle, we obtain a vector EVP for ε -efficient solutions in the sense of Németh, which essentially improves the earlier results by completely removing a usual assumption for boundedness of the objective function. From this, we also deduce several special vector EVPs, which improve and generalize the related known results.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-018-7159-x