Two-body corrections to the g factors of the bound muon and nucleus in light muonic atoms

A nonrelativistic (NR) theory of recoil corrections to the magnetic moments of bound particles is revisited. A number of contributions can be described within an NR theory with the help of various potentials. We study those potential-type contributions for two-body atomic systems. We have developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2019-10, Vol.73 (10), Article 210
Hauptverfasser: Karshenboim, Savely G., Ivanov, Vladimir G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A nonrelativistic (NR) theory of recoil corrections to the magnetic moments of bound particles is revisited. A number of contributions can be described within an NR theory with the help of various potentials. We study those potential-type contributions for two-body atomic systems. We have developed an approach, that allows us to find the g factor for an electron or muon in a two-body bound system for an arbitrary electrostatic interaction together with the m / M recoil corrections, as well as the binding corrections to the g factor of the nucleus. We focus our attention on light muonic two-body atoms, where the recoil effects are enhanced. Both mentioned kinds of contributions have been previously known only for the pure Coulomb effects. We have applied the here-obtained master equations to a few particular cases of perturbations of the Coulomb potential. In particular, the results on the recoil corrections to the finite-nuclear-size (FNS) and Uehling-potential contributions to the g factor of the bound muon are obtained. The Uehling-potential and FNS contributions to the g factor of the bound nucleus have been found as well together with the related recoil corrections. We have generalized the results for the case of the g factor of a bound muon in a three-body atomic system consisting of an electron, a muon, and a spinless nucleus. Graphical abstract
ISSN:1434-6060
1434-6079
DOI:10.1140/epjd/e2019-100072-7