Partial identification of finite mixtures in econometric models
We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distribution...
Gespeichert in:
Veröffentlicht in: | Quantitative economics 2014-03, Vol.5 (1), p.123-144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | Quantitative economics |
container_volume | 5 |
creator | Henry, Marc Kitamura, Yuichi Salanié, Bernard |
description | We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes. |
doi_str_mv | 10.3982/QE170 |
format | Article |
fullrecord | <record><control><sourceid>gale_24P</sourceid><recordid>TN_cdi_proquest_journals_2299171577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735385317</galeid><sourcerecordid>A735385317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4991-1d4df66fe11db22346bc75e08493557335e8cbd15cb4167cd2ccf8340fb093ea3</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEtPYT0CqxIlDIa6bJj2haRof0gRMYueqTROUqW1Gmgn270kph3HBPtiyHr-2ZUJmQG8wF8ntegmcnpAJcJbHHBFOj_JzMuv7LQ2GQmQcJuTutXTelE1katV5o40svbFdZHWkTWe8ilrz5fdO9ZHpIiVtZ1vlnZFRa2vV9BfkTJdNr2a_cUo298u3xWO8enl4WsxXsUzzHGKo01pnmVYAdZUkmGaV5ExRkebIWFiNKSGrGpisUsi4rBMptcCU6ormqEqckqtRd-fsx171vtjavevCyCJJwgQOjPP_KGAAyEUqMFA3I_VeNqownbbelTJ4rVoTLlTahPqcI0PBEAbZaGwY7jd9sXOmLd2hAEp5wnOOA3I9Ip-h93BEFMNXip-vFOvN_FlAYC__yA2h99aFHSlmgN81uYZv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511378483</pqid></control><display><type>article</type><title>Partial identification of finite mixtures in econometric models</title><source>Wiley Online Library Open Access</source><creator>Henry, Marc ; Kitamura, Yuichi ; Salanié, Bernard</creator><creatorcontrib>Henry, Marc ; Kitamura, Yuichi ; Salanié, Bernard</creatorcontrib><description>We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.</description><identifier>ISSN: 1759-7331</identifier><identifier>ISSN: 1759-7323</identifier><identifier>EISSN: 1759-7331</identifier><identifier>DOI: 10.3982/QE170</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>Analysis ; C24 ; Econometric models ; Econometrics ; Economic models ; finite mixture models ; Mixtures ; Partial identification</subject><ispartof>Quantitative economics, 2014-03, Vol.5 (1), p.123-144</ispartof><rights>Copyright © 2014 Marc Henry, Yuichi Kitamura, and Bernard Salanié</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright John Wiley & Sons, Inc. Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4991-1d4df66fe11db22346bc75e08493557335e8cbd15cb4167cd2ccf8340fb093ea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FQE170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FQE170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,860,1411,1427,11541,27901,27902,45550,45551,46027,46384,46451,46808</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.3982%2FQE170$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Henry, Marc</creatorcontrib><creatorcontrib>Kitamura, Yuichi</creatorcontrib><creatorcontrib>Salanié, Bernard</creatorcontrib><title>Partial identification of finite mixtures in econometric models</title><title>Quantitative economics</title><description>We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.</description><subject>Analysis</subject><subject>C24</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>finite mixture models</subject><subject>Mixtures</subject><subject>Partial identification</subject><issn>1759-7331</issn><issn>1759-7323</issn><issn>1759-7331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1PwzAMhiMEEtPYT0CqxIlDIa6bJj2haRof0gRMYueqTROUqW1Gmgn270kph3HBPtiyHr-2ZUJmQG8wF8ntegmcnpAJcJbHHBFOj_JzMuv7LQ2GQmQcJuTutXTelE1katV5o40svbFdZHWkTWe8ilrz5fdO9ZHpIiVtZ1vlnZFRa2vV9BfkTJdNr2a_cUo298u3xWO8enl4WsxXsUzzHGKo01pnmVYAdZUkmGaV5ExRkebIWFiNKSGrGpisUsi4rBMptcCU6ormqEqckqtRd-fsx171vtjavevCyCJJwgQOjPP_KGAAyEUqMFA3I_VeNqownbbelTJ4rVoTLlTahPqcI0PBEAbZaGwY7jd9sXOmLd2hAEp5wnOOA3I9Ip-h93BEFMNXip-vFOvN_FlAYC__yA2h99aFHSlmgN81uYZv</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Henry, Marc</creator><creator>Kitamura, Yuichi</creator><creator>Salanié, Bernard</creator><general>The Econometric Society</general><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>OT2</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>PRINS</scope></search><sort><creationdate>201403</creationdate><title>Partial identification of finite mixtures in econometric models</title><author>Henry, Marc ; Kitamura, Yuichi ; Salanié, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4991-1d4df66fe11db22346bc75e08493557335e8cbd15cb4167cd2ccf8340fb093ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>C24</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>finite mixture models</topic><topic>Mixtures</topic><topic>Partial identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry, Marc</creatorcontrib><creatorcontrib>Kitamura, Yuichi</creatorcontrib><creatorcontrib>Salanié, Bernard</creatorcontrib><collection>EconStor</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><jtitle>Quantitative economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Henry, Marc</au><au>Kitamura, Yuichi</au><au>Salanié, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial identification of finite mixtures in econometric models</atitle><jtitle>Quantitative economics</jtitle><date>2014-03</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>123</spage><epage>144</epage><pages>123-144</pages><issn>1759-7331</issn><issn>1759-7323</issn><eissn>1759-7331</eissn><abstract>We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/QE170</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1759-7331 |
ispartof | Quantitative economics, 2014-03, Vol.5 (1), p.123-144 |
issn | 1759-7331 1759-7323 1759-7331 |
language | eng |
recordid | cdi_proquest_journals_2299171577 |
source | Wiley Online Library Open Access |
subjects | Analysis C24 Econometric models Econometrics Economic models finite mixture models Mixtures Partial identification |
title | Partial identification of finite mixtures in econometric models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20identification%20of%20finite%20mixtures%20in%20econometric%20models&rft.jtitle=Quantitative%20economics&rft.au=Henry,%20Marc&rft.date=2014-03&rft.volume=5&rft.issue=1&rft.spage=123&rft.epage=144&rft.pages=123-144&rft.issn=1759-7331&rft.eissn=1759-7331&rft_id=info:doi/10.3982/QE170&rft_dat=%3Cgale_24P%3EA735385317%3C/gale_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511378483&rft_id=info:pmid/&rft_galeid=A735385317&rfr_iscdi=true |