Partial identification of finite mixtures in econometric models

We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative economics 2014-03, Vol.5 (1), p.123-144
Hauptverfasser: Henry, Marc, Kitamura, Yuichi, Salanié, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 123
container_title Quantitative economics
container_volume 5
creator Henry, Marc
Kitamura, Yuichi
Salanié, Bernard
description We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.
doi_str_mv 10.3982/QE170
format Article
fullrecord <record><control><sourceid>gale_24P</sourceid><recordid>TN_cdi_proquest_journals_2299171577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735385317</galeid><sourcerecordid>A735385317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4991-1d4df66fe11db22346bc75e08493557335e8cbd15cb4167cd2ccf8340fb093ea3</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEtPYT0CqxIlDIa6bJj2haRof0gRMYueqTROUqW1Gmgn270kph3HBPtiyHr-2ZUJmQG8wF8ntegmcnpAJcJbHHBFOj_JzMuv7LQ2GQmQcJuTutXTelE1katV5o40svbFdZHWkTWe8ilrz5fdO9ZHpIiVtZ1vlnZFRa2vV9BfkTJdNr2a_cUo298u3xWO8enl4WsxXsUzzHGKo01pnmVYAdZUkmGaV5ExRkebIWFiNKSGrGpisUsi4rBMptcCU6ormqEqckqtRd-fsx171vtjavevCyCJJwgQOjPP_KGAAyEUqMFA3I_VeNqownbbelTJ4rVoTLlTahPqcI0PBEAbZaGwY7jd9sXOmLd2hAEp5wnOOA3I9Ip-h93BEFMNXip-vFOvN_FlAYC__yA2h99aFHSlmgN81uYZv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511378483</pqid></control><display><type>article</type><title>Partial identification of finite mixtures in econometric models</title><source>Wiley Online Library Open Access</source><creator>Henry, Marc ; Kitamura, Yuichi ; Salanié, Bernard</creator><creatorcontrib>Henry, Marc ; Kitamura, Yuichi ; Salanié, Bernard</creatorcontrib><description>We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.</description><identifier>ISSN: 1759-7331</identifier><identifier>ISSN: 1759-7323</identifier><identifier>EISSN: 1759-7331</identifier><identifier>DOI: 10.3982/QE170</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>Analysis ; C24 ; Econometric models ; Econometrics ; Economic models ; finite mixture models ; Mixtures ; Partial identification</subject><ispartof>Quantitative economics, 2014-03, Vol.5 (1), p.123-144</ispartof><rights>Copyright © 2014 Marc Henry, Yuichi Kitamura, and Bernard Salanié</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright John Wiley &amp; Sons, Inc. Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4991-1d4df66fe11db22346bc75e08493557335e8cbd15cb4167cd2ccf8340fb093ea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FQE170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FQE170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,860,1411,1427,11541,27901,27902,45550,45551,46027,46384,46451,46808</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.3982%2FQE170$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Henry, Marc</creatorcontrib><creatorcontrib>Kitamura, Yuichi</creatorcontrib><creatorcontrib>Salanié, Bernard</creatorcontrib><title>Partial identification of finite mixtures in econometric models</title><title>Quantitative economics</title><description>We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.</description><subject>Analysis</subject><subject>C24</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>finite mixture models</subject><subject>Mixtures</subject><subject>Partial identification</subject><issn>1759-7331</issn><issn>1759-7323</issn><issn>1759-7331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1PwzAMhiMEEtPYT0CqxIlDIa6bJj2haRof0gRMYueqTROUqW1Gmgn270kph3HBPtiyHr-2ZUJmQG8wF8ntegmcnpAJcJbHHBFOj_JzMuv7LQ2GQmQcJuTutXTelE1katV5o40svbFdZHWkTWe8ilrz5fdO9ZHpIiVtZ1vlnZFRa2vV9BfkTJdNr2a_cUo298u3xWO8enl4WsxXsUzzHGKo01pnmVYAdZUkmGaV5ExRkebIWFiNKSGrGpisUsi4rBMptcCU6ormqEqckqtRd-fsx171vtjavevCyCJJwgQOjPP_KGAAyEUqMFA3I_VeNqownbbelTJ4rVoTLlTahPqcI0PBEAbZaGwY7jd9sXOmLd2hAEp5wnOOA3I9Ip-h93BEFMNXip-vFOvN_FlAYC__yA2h99aFHSlmgN81uYZv</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Henry, Marc</creator><creator>Kitamura, Yuichi</creator><creator>Salanié, Bernard</creator><general>The Econometric Society</general><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>OT2</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>PRINS</scope></search><sort><creationdate>201403</creationdate><title>Partial identification of finite mixtures in econometric models</title><author>Henry, Marc ; Kitamura, Yuichi ; Salanié, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4991-1d4df66fe11db22346bc75e08493557335e8cbd15cb4167cd2ccf8340fb093ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>C24</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>finite mixture models</topic><topic>Mixtures</topic><topic>Partial identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry, Marc</creatorcontrib><creatorcontrib>Kitamura, Yuichi</creatorcontrib><creatorcontrib>Salanié, Bernard</creatorcontrib><collection>EconStor</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><jtitle>Quantitative economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Henry, Marc</au><au>Kitamura, Yuichi</au><au>Salanié, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial identification of finite mixtures in econometric models</atitle><jtitle>Quantitative economics</jtitle><date>2014-03</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>123</spage><epage>144</epage><pages>123-144</pages><issn>1759-7331</issn><issn>1759-7323</issn><eissn>1759-7331</eissn><abstract>We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/QE170</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1759-7331
ispartof Quantitative economics, 2014-03, Vol.5 (1), p.123-144
issn 1759-7331
1759-7323
1759-7331
language eng
recordid cdi_proquest_journals_2299171577
source Wiley Online Library Open Access
subjects Analysis
C24
Econometric models
Econometrics
Economic models
finite mixture models
Mixtures
Partial identification
title Partial identification of finite mixtures in econometric models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20identification%20of%20finite%20mixtures%20in%20econometric%20models&rft.jtitle=Quantitative%20economics&rft.au=Henry,%20Marc&rft.date=2014-03&rft.volume=5&rft.issue=1&rft.spage=123&rft.epage=144&rft.pages=123-144&rft.issn=1759-7331&rft.eissn=1759-7331&rft_id=info:doi/10.3982/QE170&rft_dat=%3Cgale_24P%3EA735385317%3C/gale_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511378483&rft_id=info:pmid/&rft_galeid=A735385317&rfr_iscdi=true