Partial identification of finite mixtures in econometric models

We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative economics 2014-03, Vol.5 (1), p.123-144
Hauptverfasser: Henry, Marc, Kitamura, Yuichi, Salanié, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider partial identification of finite mixture models in the presence of an observable source of variation in the mixture weights that leaves component distributions unchanged, as is the case in large classes of econometric models. We first show that when the number J of component distributions is known a priori, the family of mixture models compatible with the data is a subset of a J(J−1)‐dimensional space. When the outcome variable is continuous, this subset is defined by linear constraints, which we characterize exactly. Our identifying assumption has testable implications, which we spell out for J = 2. We also extend our results to the case when the analyst does not know the true number of component distributions and to models with discrete outcomes.
ISSN:1759-7331
1759-7323
1759-7331
DOI:10.3982/QE170