Rationalizable voting

When is a finite number of binary voting choices consistent with the hypothesis that the voter has preferences that admit a (quasi)concave utility representation? I derive necessary and sufficient conditions and a tractable algorithm to verify their validity. I show that the hypothesis that the vote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical economics 2010-01, Vol.5 (1), p.93-125
1. Verfasser: Kalandrakis, Tasos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When is a finite number of binary voting choices consistent with the hypothesis that the voter has preferences that admit a (quasi)concave utility representation? I derive necessary and sufficient conditions and a tractable algorithm to verify their validity. I show that the hypothesis that the voter has preferences represented by a concave utility function is observationally equivalent to the hypothesis that she has preferences represented by a quasiconcave utility function, I obtain testable restrictions on the location of voter ideal points, and I apply the conditions to the problem of predicting future voting decisions. Without knowledge of the location of the voting alternatives, voting decisions by multiple voters impose no joint testable restrictions on the location of their ideal points, even in one dimension. Furthermore, the voting records of any group of voters can always be embedded in a two-dimensional space with strictly concave utility representations and arbitrary ideal points for the voters. The analysis readily generalizes to choice situations over general finite budget sets.
ISSN:1555-7561
1933-6837
1555-7561
DOI:10.3982/TE425