Tool wear and wear mechanism of carbide tool in cutting Al–Si alloy diecastings
Tool wear and wear mechanism of carbide cutting tool in turning Al–Si alloy diecastings were investigated. Decreasing amount of coarse primary silicon was effective for reducing cutting resistance and cutting tool wear. New hyper-eutectic Al–Si system alloy which doesn’t contain coarser silicon part...
Gespeichert in:
Veröffentlicht in: | Journal of Japan Institute of Light Metals 2019/03/25, Vol.69(3), pp.174-179 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tool wear and wear mechanism of carbide cutting tool in turning Al–Si alloy diecastings were investigated. Decreasing amount of coarse primary silicon was effective for reducing cutting resistance and cutting tool wear. New hyper-eutectic Al–Si system alloy which doesn’t contain coarser silicon particles provided good turning machinability equivalent to conventional eutectic Al–Si system alloy. In case of increasing feed rate from 0.05 to 0.10 mm/rev, cutting tool wear of conventional hyper-eutectic Al–Si system alloy increased. On the other hand, that of eutectic Al–Si system alloy decreased, and that of new hyper-eutectic Al–Si system alloy didn’t changed. Built-up edge and aluminum deposit on the flank wear land were observed in all aluminum alloys. |
---|---|
ISSN: | 0451-5994 1880-8018 |
DOI: | 10.2464/jilm.69.174 |