Piezoelectric Metamaterial with Negative and Zero Poisson’s Ratios

AbstractThis study presents the finite element–based micromechanical modeling approach to obtain the electromechanical properties of the piezoelectric metamaterial based on honeycomb (HC) cellular networks. The symmetry of the periodic structure was employed to derive mixed boundary conditions (MBCs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mechanics 2019-12, Vol.145 (12)
Hauptverfasser: Khan, K. A, Al-Mansoor, S, Khan, S. Z, Khan, M. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractThis study presents the finite element–based micromechanical modeling approach to obtain the electromechanical properties of the piezoelectric metamaterial based on honeycomb (HC) cellular networks. The symmetry of the periodic structure was employed to derive mixed boundary conditions (MBCs) analogous to periodic boundary conditions (PBCs). Three classes of hexagonal HC cellular networks, namely, a conventional HC (CHC), a re-entrant HC (RE), and a semi-re-entrant HC (SRE) were considered. The representative volume elements (RVEs) of these three classes of cellular materials were created, and finite element analyses were carried out to analyze the effect of orientation of the ligament on their effective electromechanical properties and their suitability in specific engineering applications. The longitudinally poled piezoelectric HC cellular networks showed an enhanced behavior as compared to the monolithic piezoelectric materials. Moreover, longitudinally poled HC cellular networks demonstrated that, as compared to the bulk constituent, their hydrostatic figure of merit increased and their acoustic impedance decreased by one order of magnitude, respectively, indicating their applicability for the design on hydrophones. Moreover, results showed that cellular metamaterial with tunable electromechanical characteristics and a variety of auxetic behaviors such as negative, positive, or zero Poisson’s ratios could be developed. Such novel HC network-based functional cellular materials are likely to facilitate the design of light-weight devices for various next-generation sensors and actuators.
ISSN:0733-9399
1943-7889
DOI:10.1061/(ASCE)EM.1943-7889.0001674