A System-Level Approach to Controller Synthesis
Biological and advanced cyber-physical control systems often have limited, sparse, uncertain, and distributed communication and computing in addition to sensing and actuation. Fortunately, the corresponding plants and performance requirements are also sparse and structured, and this must be exploite...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2019-10, Vol.64 (10), p.4079-4093 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biological and advanced cyber-physical control systems often have limited, sparse, uncertain, and distributed communication and computing in addition to sensing and actuation. Fortunately, the corresponding plants and performance requirements are also sparse and structured, and this must be exploited to make constrained controller design feasible and tractable. We introduce a new "system level" (SL) approach involving three complementary SL elements. SL parameterizations (SLPs) provide an alternative to the Youla parameterization of all stabilizing controllers and the responses they achieve, and combine with SL constraints (SLCs) to parameterize the largest known class of constrained stabilizing controllers that admit a convex characterization, generalizing quadratic invariance. SLPs also lead to a generalization of detectability and stabilizability, suggesting the existence of a rich separation structure, that when combined with SLCs is naturally applicable to structurally constrained controllers and systems. We further provide a catalog of useful SLCs, most importantly including sparsity, delay, and locality constraints on both communication and computing internal to the controller, and external system performance. Finally, we formulate SL synthesis problems, which define the broadest known class of constrained optimal control problems that can be solved using convex programming. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2018.2890753 |