A Microwave-Induced Thermoacoustic Imaging System With Non-Contact Ultrasound Detection

Portable and easy-to-use imaging systems are in high demand for medical, security screening, nondestructive testing, and sensing applications. We present a new microwave-induced thermoacoustic imaging system with non-contact, airborne ultrasound (US) detection. In this system, a 2.7 GHz microwave ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2019-10, Vol.66 (10), p.1587-1599
Hauptverfasser: Singhvi, Ajay, Boyle, Kevin C., Fallahpour, Mojtaba, Khuri-Yakub, Butrus T., Arbabian, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Portable and easy-to-use imaging systems are in high demand for medical, security screening, nondestructive testing, and sensing applications. We present a new microwave-induced thermoacoustic imaging system with non-contact, airborne ultrasound (US) detection. In this system, a 2.7 GHz microwave excitation causes differential heating at interfaces with dielectric contrast, and the resulting US signal via the thermoacoustic effect travels out of the sample to the detector in air at a standoff. The 65 dB interface loss due to the impedance mismatch at the air-sample boundary is overcome with high-sensitivity capacitive micromachined ultrasonic transducers with minimum detectable pressures (MDPs) as low as 278 μP arms and we explore two different designs-one operating at a center frequency of 71 kHz and another at a center frequency of 910 kHz. We further demonstrate that the air-sample interface presents a tradeoff with the advantage of improved resolution, as the change in wave velocity at the interface creates a strong focusing effect alongside the attenuation, resulting in axial resolutions more than 10× smaller than that predicted by the traditional speed/bandwidth limit. A piecewise synthetic aperture radar (SAR) algorithm modified for US imaging and enhanced with signal processing techniques is used for image reconstruction, resulting in mm-scale lateral and axial image resolution. Finally, measurements are conducted to verify simulations and demonstrate successful system performance.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2019.2925592