Cohomologie feuilletée du flot affine de Reeb sur la variété de Hopf \({\Bbb S}^n\times {\Bbb S}^1\)
We determine explicitly the foliated cohomology \(H_{\cal F}^\ast (M)\) of the affine Reeb flow \({\cal F}\) on the Hopf manifold \({\Bbb S}^n\times {\Bbb S}^1\). The vector space \(H_{\cal F}^1(M)\) contains exactly the obstructions to solve the cohomological equation \(X\cdot f=g\) where \(f\) and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine explicitly the foliated cohomology \(H_{\cal F}^\ast (M)\) of the affine Reeb flow \({\cal F}\) on the Hopf manifold \({\Bbb S}^n\times {\Bbb S}^1\). The vector space \(H_{\cal F}^1(M)\) contains exactly the obstructions to solve the cohomological equation \(X\cdot f=g\) where \(f\) and \(g\) are \(C^\infty \)-functions and \(X\) is any non singular vector field defining the foliation \({\cal F}\). The topological dual of \(H_{\cal F}^1(M)\) is the space of distributions invariant by \(X\). |
---|---|
ISSN: | 2331-8422 |