Machine learning approaches for analyzing and enhancing molecular dynamics simulations

Molecular dynamics (MD) has become a powerful tool for studying biophysical systems, due to increasing computational power and availability of software. Although MD has made many contributions to better understanding these complex biophysical systems, there remain methodological difficulties to be s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-09
Hauptverfasser: Wang, Yihang, Joao Marcelo Lamim Ribeiro, Tiwary, Pratyush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular dynamics (MD) has become a powerful tool for studying biophysical systems, due to increasing computational power and availability of software. Although MD has made many contributions to better understanding these complex biophysical systems, there remain methodological difficulties to be surmounted. First, how to make the deluge of data generated in running even a microsecond long MD simulation human comprehensible. Second, how to efficiently sample the underlying free energy surface and kinetics. In this short perspective, we summarize machine learning based ideas that are solving both of these limitations, with a focus on their key theoretical underpinnings and remaining challenges.
ISSN:2331-8422