Dynamic Partial Sufficient Dimension Reduction

Sufficient dimension reduction aims for reduction of dimensionality of a regression without loss of information by replacing the original predictor with its lower-dimensional subspace. Partial (sufficient) dimension reduction arises when the predictors naturally fall into two sets, X and W, and we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-09
Hauptverfasser: Lu, Li, Tan, Kai, Xuerong Meggie Wen, Zhou, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sufficient dimension reduction aims for reduction of dimensionality of a regression without loss of information by replacing the original predictor with its lower-dimensional subspace. Partial (sufficient) dimension reduction arises when the predictors naturally fall into two sets, X and W, and we seek dimension reduction on X alone while considering all predictors in the regression analysis. Though partial dimension reduction is a very general problem, only very few research results are available when W is continuous. To the best of our knowledge, these methods generally perform poorly when X and W are related, furthermore, none can deal with the situation where the reduced lower-dimensional subspace of X varies dynamically with W. In this paper, We develop a novel dynamic partial dimension reduction method, which could handle the dynamic dimension reduction issue and also allows the dependency of X on W. The asymptotic consistency of our method is investigated. Extensive numerical studies and real data analysis show that our {\it Dynamic Partial Dimension Reduction} method has superior performance comparing to the existing methods.
ISSN:2331-8422