Surface hydrophobisation of lignocellulosic waste for the preparation of biothermoelastoplastic composites

[Display omitted] •Proper cellulose drying guarantees efficient modification reducing the use chemicals.•Wetting-drying cycles of plant fibres highly determine their structure.•The created stress and hydroxyl group accessibility ratio determines reactivity.•Solvent exchange improves the cellulose mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2019-09, Vol.118, p.481-491
Hauptverfasser: Wolski, Korneliusz, Cichosz, Stefan, Masek, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Proper cellulose drying guarantees efficient modification reducing the use chemicals.•Wetting-drying cycles of plant fibres highly determine their structure.•The created stress and hydroxyl group accessibility ratio determines reactivity.•Solvent exchange improves the cellulose molecular mobility. In this research lignocellulosic waste is utilized as a filler in ethylene-norbornene copolymer (Topas®) matrix. To improve the interface properties between the filler and polymer matrix, lignocellulose was chemically hydrophobized with two coupling agents, namely: vinyltrimethoxysilane (VTMS) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPS). Prepared composite samples have been investigated for their thermal and mechanical properties, as well as structure changes. Fourier-transform infrared spectroscopy (FT-IR) analysis revealed that possible bonds recombination within the composite structure may occur – intensity changes in 1100–1000 cm−1 region (COOCO moieties) and 1300–1200 cm−1 (CH3, CO, CC bonds). This phenomenon contributed to the observed improvement of composite storage modulus values and performance. Modified lignocellulosic fibres were investigated to assess properties changes which could confirm the silanization occurrence, e.g., increase in thermal stability, hydrodynamic radii enlargement. This research reports the most relevant advances in the field of chemical surface modification of lignocellulose fibres recently achieved by our group.
ISSN:0014-3057
1873-1945
DOI:10.1016/j.eurpolymj.2019.06.026