Geo-Supervised Visual Depth Prediction

We propose using global orientation from inertial measurements, and the bias it induces on the shape of objects populating the scene, to inform visual three-dimensional reconstruction. We test the effect of using the resulting prior in-depth prediction from a single image, where the normal vectors t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2019-04, Vol.4 (2), p.1661-1668
Hauptverfasser: Fei, Xiaohan, Wong, Alex, Soatto, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose using global orientation from inertial measurements, and the bias it induces on the shape of objects populating the scene, to inform visual three-dimensional reconstruction. We test the effect of using the resulting prior in-depth prediction from a single image, where the normal vectors to surfaces of objects of certain classes tend to align with gravity or be orthogonal to it. Adding such a prior to baseline methods for monocular depth prediction yields improvements beyond the state-of-the-art and illustrates the power of gravity as a supervisory signal.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2019.2896963