Geo-Supervised Visual Depth Prediction
We propose using global orientation from inertial measurements, and the bias it induces on the shape of objects populating the scene, to inform visual three-dimensional reconstruction. We test the effect of using the resulting prior in-depth prediction from a single image, where the normal vectors t...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-04, Vol.4 (2), p.1661-1668 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose using global orientation from inertial measurements, and the bias it induces on the shape of objects populating the scene, to inform visual three-dimensional reconstruction. We test the effect of using the resulting prior in-depth prediction from a single image, where the normal vectors to surfaces of objects of certain classes tend to align with gravity or be orthogonal to it. Adding such a prior to baseline methods for monocular depth prediction yields improvements beyond the state-of-the-art and illustrates the power of gravity as a supervisory signal. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2019.2896963 |