Reference-Free Calibration in Sensor Networks

Sensor calibration is one of the fundamental challenges in large-scale Internet of Things networks. In this article, we address the challenge of reference-free calibration of a densely deployed sensor network. Conventionally, to calibrate an in-place sensor network (or sensor array), a reference is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2018-09, Vol.2 (3), p.1-4
Hauptverfasser: Rajan, Raj Thilak, Schaijk, Rob-van, Das, Anup, Romme, Jac, Pasveer, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensor calibration is one of the fundamental challenges in large-scale Internet of Things networks. In this article, we address the challenge of reference-free calibration of a densely deployed sensor network. Conventionally, to calibrate an in-place sensor network (or sensor array), a reference is arbitrarily chosen with or without prior information on sensor performance. However, an arbitrary selection of a reference could prove fatal, if an erroneous sensor is inadvertently chosen. To avert single point of dependence, and to improve estimator performance, we propose unbiased reference-free algorithms. Although our focus is on reference-free solutions, the proposed framework allows the incorporation of additional references, if available. We show, with the help of simulations, that the proposed solutions achieve the derived statistical lower bounds asymptotically. In addition, the proposed algorithms show improvements on real-life datasets, as compared to prevalent algorithms.
ISSN:2475-1472
2475-1472
DOI:10.1109/LSENS.2018.2866627