Monocular Camera Based Fruit Counting and Mapping With Semantic Data Association

In this letter, we present a cheap, lightweight, and fast fruit counting pipeline. Our pipeline relies only on a monocular camera, and achieves counting performance comparable to a state-of-the-art fruit counting system that utilizes an expensive sensor suite including a monocular camera, LiDAR and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2019-07, Vol.4 (3), p.2296-2303
Hauptverfasser: Xu Liu, Chen, Steven W., Chenhao Liu, Shivakumar, Shreyas S., Das, Jnaneshwar, Taylor, Camillo J., Underwood, James, Kumar, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we present a cheap, lightweight, and fast fruit counting pipeline. Our pipeline relies only on a monocular camera, and achieves counting performance comparable to a state-of-the-art fruit counting system that utilizes an expensive sensor suite including a monocular camera, LiDAR and GPS/INS on a mango dataset. Our pipeline begins with a fruit and tree trunk detection component that uses state-of-the-art convolutional neural networks (CNNs). It then tracks fruits and tree trunks across images, with a Kalman Filter fusing measurements from the CNN detectors and an optical flow estimator. Finally, fruit count and map are estimated by an efficient fruit-as-feature semantic structure from motion algorithm that converts two-dimensional (2-D) tracks of fruits and trunks into 3-D landmarks, and uses these landmarks to identify double counting scenarios. There are many benefits of developing such a low cost and lightweight fruit counting system, including applicability to agriculture in developing countries, where monetary constraints or unstructured environments necessitate cheaper hardware solutions.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2019.2901987