Monocular Camera Based Fruit Counting and Mapping With Semantic Data Association
In this letter, we present a cheap, lightweight, and fast fruit counting pipeline. Our pipeline relies only on a monocular camera, and achieves counting performance comparable to a state-of-the-art fruit counting system that utilizes an expensive sensor suite including a monocular camera, LiDAR and...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-07, Vol.4 (3), p.2296-2303 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we present a cheap, lightweight, and fast fruit counting pipeline. Our pipeline relies only on a monocular camera, and achieves counting performance comparable to a state-of-the-art fruit counting system that utilizes an expensive sensor suite including a monocular camera, LiDAR and GPS/INS on a mango dataset. Our pipeline begins with a fruit and tree trunk detection component that uses state-of-the-art convolutional neural networks (CNNs). It then tracks fruits and tree trunks across images, with a Kalman Filter fusing measurements from the CNN detectors and an optical flow estimator. Finally, fruit count and map are estimated by an efficient fruit-as-feature semantic structure from motion algorithm that converts two-dimensional (2-D) tracks of fruits and trunks into 3-D landmarks, and uses these landmarks to identify double counting scenarios. There are many benefits of developing such a low cost and lightweight fruit counting system, including applicability to agriculture in developing countries, where monetary constraints or unstructured environments necessitate cheaper hardware solutions. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2019.2901987 |