The impact of time on the heat resistance of self-compacting high-performance concrete incorporated with recycled martials

The influence of time on the mechanical behavior of concrete after exposure to elevated temperatures has been studied. Twenty-one self-compacting high-performance concrete mixtures with different incorporation amounts of coarse recycled concrete aggregate (RCA) and three unprocessed waste powder mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2019-10, Vol.138 (1), p.35-45
Hauptverfasser: Abed, Mohammed, Nemes, Rita, Lublóy, Éva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of time on the mechanical behavior of concrete after exposure to elevated temperatures has been studied. Twenty-one self-compacting high-performance concrete mixtures with different incorporation amounts of coarse recycled concrete aggregate (RCA) and three unprocessed waste powder materials have been tested at age of 270 days for residual compressive and flexural strength after exposure to fire. The results have been compared to the results for the same concrete, which have been studied at age of 90 days. A new parameter has been introduced for comparing the responses of concrete to elevated temperatures at different ages; this parameter was the “heat resistance” which expresses the total area under the curve of the relative residual strength (compressive or flexural) after exposing to six temperature degrees (20, 150, 300, 500, 600, and 800 °C). The results showed that the age of concrete has an influence on the response of concrete to elevated temperatures. The heat resistance of compressive strength enhanced with age but the concrete behaved with a tendency different to that at the age of 90 days. The heat resistance of flexural strength has not been affected or slightly decreased but not with more than 10% to that at the age of 90 days. The used waste powder materials were unprocessed waste fly ash, waste cellular concrete powder and waste perlite powder; they proved that using any of them up to 15% as a replacement for cement with 0% or 25% of RCA enhanced the concrete resistance for the fire with time. The main two reasons for changing of residual strength with the time were the changing of water content and the proceeding of hydration of the binder. In general, long ages testing properties of concrete simulate the real behavior of concrete structures accurately.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-019-08263-z