Insulin-like growth factor-I and genetic effects on indexes of protein degradation in response to feed deprivation in rainbow trout (Oncorhynchus mykiss)
This study determined the effect of genetic variation, feed deprivation, and insulin-like growth factor-I (IGF-I) on weight loss, plasma IGF-I and growth hormone, and indexes of protein degradation in eight full-sibling families of rainbow trout. After 2 wk of feed deprivation, fish treated with IGF...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2009-11, Vol.297 (5), p.R1332-R1342 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study determined the effect of genetic variation, feed deprivation, and insulin-like growth factor-I (IGF-I) on weight loss, plasma IGF-I and growth hormone, and indexes of protein degradation in eight full-sibling families of rainbow trout. After 2 wk of feed deprivation, fish treated with IGF-I lost 16% less (P < 0.05) wet weight than untreated fish. Feed deprivation increased growth hormone (P < 0.05) and decreased IGF-I (P < 0.05), but hormone levels were not altered by IGF-I. Plasma 3-methylhistidine concentrations were not affected by IGF-I but were decreased after 2 wk (P < 0.05) and increased after 4 wk (P < 0.05) of feed deprivation. In white muscle, transcript abundance of genes in the ubiquitin-proteasome, lysosomal, and calpain- and caspase-dependent pathways were affected by feed deprivation (P < 0.05). IGF-I prevented the feed deprivation-induced upregulation of MAFbx (F-box) and cathepsin transcripts and reduced abundance of proteasomal mRNAs (P < 0.05), suggesting that reduction of protein degradation via these pathways may be partially responsible for the IGF-I-induced reduction of weight loss. Family variations in gene expression, IGF-I concentrations, and weight loss during fasting suggest genetic variation in the fasting response, with considerable impact on regulation of proteolytic pathways. These data indicate that nutrient availability, IGF-I, and genetic variation affect weight loss, in part through alterations of proteolytic pathways in rainbow trout, and that regulation of genes within these pathways is coordinated in a way that supports a similar physiological response. |
---|---|
ISSN: | 1522-1490 0363-6119 1522-1490 |
DOI: | 10.1152/ajpregu.00272.2009 |