(G_2\) Holonomy, Taubes' Construction of Seiberg-Witten Invariants and Superconducting Vortices

Using a reformulation of topological \({\cal N}=2\) QFT's in M-theory setup, where QFT is realized via M5 branes wrapping co-associative cycles in a \(G_2\) manifold constructed from the space of self-dual 2-forms over \(X^4\), we show that superconducting vortices are mapped to M2 branes stret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Cecotti, Sergio, Gerig, Chris, Vafa, Cumrun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a reformulation of topological \({\cal N}=2\) QFT's in M-theory setup, where QFT is realized via M5 branes wrapping co-associative cycles in a \(G_2\) manifold constructed from the space of self-dual 2-forms over \(X^4\), we show that superconducting vortices are mapped to M2 branes stretched between M5 branes. This setup provides a physical explanation of Taubes' construction of the Seiberg-Witten invariants when \(X^4\) is symplectic and the superconducting vortices are realized as pseudo-holomorphic curves. This setup is general enough to realize topological QFT's arising from \({\cal N}=2\) QFT's from all Gaiotto theories on arbitrary 4-manifolds.
ISSN:2331-8422