Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring
In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expecta...
Gespeichert in:
Veröffentlicht in: | International journal of system assurance engineering and management 2019-08, Vol.10 (4), p.746-764 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 764 |
---|---|
container_issue | 4 |
container_start_page | 746 |
container_title | International journal of system assurance engineering and management |
container_volume | 10 |
creator | Singh, Sukhdev Arabi Belaghi, Reza Noori Asl, Mehri |
description | In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors. |
doi_str_mv | 10.1007/s13198-019-00806-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2296717446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296717446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEElXpH2CyxGw4O05ij7QqEKkSC8yW41zaVGkS7AQpC78d0yCxMdmW33t374uiWwb3DCB78CxmSlJgigJISKm6iBagspSKWMjL8z2hqQR1Ha28PwIA40xwAYvoa-uH-mSGumuJaUvSOyxre36Ovm73xDbG-9qa5vy9NhP62gRt37vO2AN6UnWOrEfnSJ7n5NSV2JCxLdGFrG7vMLg_kQxTjzQnh6lwdUkstr5zIf4muqpM43H1ey6j96ft2-aF7l6f883jjtpQbaDcxGBSWSUJKwubqZgrlaAsRAwyY0kZS16hlGkhQQhWYAE8s6ZiKVScMRTxMrqbc8NOHyP6QR-70bVhpOZcpRnLhEiDis8q6zrvHVa6dwGOmzQD_YNaz6h1QK3PqLUKpng2-f6nEbq_6H9c36nTgiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296717446</pqid></control><display><type>article</type><title>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</title><source>Springer Nature - Complete Springer Journals</source><creator>Singh, Sukhdev ; Arabi Belaghi, Reza ; Noori Asl, Mehri</creator><creatorcontrib>Singh, Sukhdev ; Arabi Belaghi, Reza ; Noori Asl, Mehri</creatorcontrib><description>In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.</description><identifier>ISSN: 0975-6809</identifier><identifier>EISSN: 0976-4348</identifier><identifier>DOI: 10.1007/s13198-019-00806-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Bayesian analysis ; Computer simulation ; Engineering ; Engineering Economics ; Estimates ; Fisher information ; Importance sampling ; Logistics ; Marketing ; Maximization ; Maximum likelihood estimators ; Optimization ; Organization ; Original Article ; Parameter estimation ; Quality Control ; Regression analysis ; Reliability ; Safety and Risk</subject><ispartof>International journal of system assurance engineering and management, 2019-08, Vol.10 (4), p.746-764</ispartof><rights>The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</citedby><cites>FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</cites><orcidid>0000-0002-6989-9267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13198-019-00806-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13198-019-00806-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Singh, Sukhdev</creatorcontrib><creatorcontrib>Arabi Belaghi, Reza</creatorcontrib><creatorcontrib>Noori Asl, Mehri</creatorcontrib><title>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</title><title>International journal of system assurance engineering and management</title><addtitle>Int J Syst Assur Eng Manag</addtitle><description>In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Economics</subject><subject>Estimates</subject><subject>Fisher information</subject><subject>Importance sampling</subject><subject>Logistics</subject><subject>Marketing</subject><subject>Maximization</subject><subject>Maximum likelihood estimators</subject><subject>Optimization</subject><subject>Organization</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Quality Control</subject><subject>Regression analysis</subject><subject>Reliability</subject><subject>Safety and Risk</subject><issn>0975-6809</issn><issn>0976-4348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEElXpH2CyxGw4O05ij7QqEKkSC8yW41zaVGkS7AQpC78d0yCxMdmW33t374uiWwb3DCB78CxmSlJgigJISKm6iBagspSKWMjL8z2hqQR1Ha28PwIA40xwAYvoa-uH-mSGumuJaUvSOyxre36Ovm73xDbG-9qa5vy9NhP62gRt37vO2AN6UnWOrEfnSJ7n5NSV2JCxLdGFrG7vMLg_kQxTjzQnh6lwdUkstr5zIf4muqpM43H1ey6j96ft2-aF7l6f883jjtpQbaDcxGBSWSUJKwubqZgrlaAsRAwyY0kZS16hlGkhQQhWYAE8s6ZiKVScMRTxMrqbc8NOHyP6QR-70bVhpOZcpRnLhEiDis8q6zrvHVa6dwGOmzQD_YNaz6h1QK3PqLUKpng2-f6nEbq_6H9c36nTgiM</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Singh, Sukhdev</creator><creator>Arabi Belaghi, Reza</creator><creator>Noori Asl, Mehri</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6989-9267</orcidid></search><sort><creationdate>20190801</creationdate><title>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</title><author>Singh, Sukhdev ; Arabi Belaghi, Reza ; Noori Asl, Mehri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Economics</topic><topic>Estimates</topic><topic>Fisher information</topic><topic>Importance sampling</topic><topic>Logistics</topic><topic>Marketing</topic><topic>Maximization</topic><topic>Maximum likelihood estimators</topic><topic>Optimization</topic><topic>Organization</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Quality Control</topic><topic>Regression analysis</topic><topic>Reliability</topic><topic>Safety and Risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Sukhdev</creatorcontrib><creatorcontrib>Arabi Belaghi, Reza</creatorcontrib><creatorcontrib>Noori Asl, Mehri</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of system assurance engineering and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Sukhdev</au><au>Arabi Belaghi, Reza</au><au>Noori Asl, Mehri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</atitle><jtitle>International journal of system assurance engineering and management</jtitle><stitle>Int J Syst Assur Eng Manag</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>10</volume><issue>4</issue><spage>746</spage><epage>764</epage><pages>746-764</pages><issn>0975-6809</issn><eissn>0976-4348</eissn><abstract>In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s13198-019-00806-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6989-9267</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-6809 |
ispartof | International journal of system assurance engineering and management, 2019-08, Vol.10 (4), p.746-764 |
issn | 0975-6809 0976-4348 |
language | eng |
recordid | cdi_proquest_journals_2296717446 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Bayesian analysis Computer simulation Engineering Engineering Economics Estimates Fisher information Importance sampling Logistics Marketing Maximization Maximum likelihood estimators Optimization Organization Original Article Parameter estimation Quality Control Regression analysis Reliability Safety and Risk |
title | Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20prediction%20using%20classical%20and%20Bayesian%20approaches%20for%20Burr%20III%20model%20under%20progressive%20type-I%20hybrid%20censoring&rft.jtitle=International%20journal%20of%20system%20assurance%20engineering%20and%20management&rft.au=Singh,%20Sukhdev&rft.date=2019-08-01&rft.volume=10&rft.issue=4&rft.spage=746&rft.epage=764&rft.pages=746-764&rft.issn=0975-6809&rft.eissn=0976-4348&rft_id=info:doi/10.1007/s13198-019-00806-9&rft_dat=%3Cproquest_cross%3E2296717446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296717446&rft_id=info:pmid/&rfr_iscdi=true |