Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring

In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expecta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of system assurance engineering and management 2019-08, Vol.10 (4), p.746-764
Hauptverfasser: Singh, Sukhdev, Arabi Belaghi, Reza, Noori Asl, Mehri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 4
container_start_page 746
container_title International journal of system assurance engineering and management
container_volume 10
creator Singh, Sukhdev
Arabi Belaghi, Reza
Noori Asl, Mehri
description In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.
doi_str_mv 10.1007/s13198-019-00806-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2296717446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296717446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEElXpH2CyxGw4O05ij7QqEKkSC8yW41zaVGkS7AQpC78d0yCxMdmW33t374uiWwb3DCB78CxmSlJgigJISKm6iBagspSKWMjL8z2hqQR1Ha28PwIA40xwAYvoa-uH-mSGumuJaUvSOyxre36Ovm73xDbG-9qa5vy9NhP62gRt37vO2AN6UnWOrEfnSJ7n5NSV2JCxLdGFrG7vMLg_kQxTjzQnh6lwdUkstr5zIf4muqpM43H1ey6j96ft2-aF7l6f883jjtpQbaDcxGBSWSUJKwubqZgrlaAsRAwyY0kZS16hlGkhQQhWYAE8s6ZiKVScMRTxMrqbc8NOHyP6QR-70bVhpOZcpRnLhEiDis8q6zrvHVa6dwGOmzQD_YNaz6h1QK3PqLUKpng2-f6nEbq_6H9c36nTgiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296717446</pqid></control><display><type>article</type><title>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</title><source>Springer Nature - Complete Springer Journals</source><creator>Singh, Sukhdev ; Arabi Belaghi, Reza ; Noori Asl, Mehri</creator><creatorcontrib>Singh, Sukhdev ; Arabi Belaghi, Reza ; Noori Asl, Mehri</creatorcontrib><description>In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.</description><identifier>ISSN: 0975-6809</identifier><identifier>EISSN: 0976-4348</identifier><identifier>DOI: 10.1007/s13198-019-00806-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Bayesian analysis ; Computer simulation ; Engineering ; Engineering Economics ; Estimates ; Fisher information ; Importance sampling ; Logistics ; Marketing ; Maximization ; Maximum likelihood estimators ; Optimization ; Organization ; Original Article ; Parameter estimation ; Quality Control ; Regression analysis ; Reliability ; Safety and Risk</subject><ispartof>International journal of system assurance engineering and management, 2019-08, Vol.10 (4), p.746-764</ispartof><rights>The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</citedby><cites>FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</cites><orcidid>0000-0002-6989-9267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13198-019-00806-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13198-019-00806-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Singh, Sukhdev</creatorcontrib><creatorcontrib>Arabi Belaghi, Reza</creatorcontrib><creatorcontrib>Noori Asl, Mehri</creatorcontrib><title>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</title><title>International journal of system assurance engineering and management</title><addtitle>Int J Syst Assur Eng Manag</addtitle><description>In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Economics</subject><subject>Estimates</subject><subject>Fisher information</subject><subject>Importance sampling</subject><subject>Logistics</subject><subject>Marketing</subject><subject>Maximization</subject><subject>Maximum likelihood estimators</subject><subject>Optimization</subject><subject>Organization</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Quality Control</subject><subject>Regression analysis</subject><subject>Reliability</subject><subject>Safety and Risk</subject><issn>0975-6809</issn><issn>0976-4348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEElXpH2CyxGw4O05ij7QqEKkSC8yW41zaVGkS7AQpC78d0yCxMdmW33t374uiWwb3DCB78CxmSlJgigJISKm6iBagspSKWMjL8z2hqQR1Ha28PwIA40xwAYvoa-uH-mSGumuJaUvSOyxre36Ovm73xDbG-9qa5vy9NhP62gRt37vO2AN6UnWOrEfnSJ7n5NSV2JCxLdGFrG7vMLg_kQxTjzQnh6lwdUkstr5zIf4muqpM43H1ey6j96ft2-aF7l6f883jjtpQbaDcxGBSWSUJKwubqZgrlaAsRAwyY0kZS16hlGkhQQhWYAE8s6ZiKVScMRTxMrqbc8NOHyP6QR-70bVhpOZcpRnLhEiDis8q6zrvHVa6dwGOmzQD_YNaz6h1QK3PqLUKpng2-f6nEbq_6H9c36nTgiM</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Singh, Sukhdev</creator><creator>Arabi Belaghi, Reza</creator><creator>Noori Asl, Mehri</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6989-9267</orcidid></search><sort><creationdate>20190801</creationdate><title>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</title><author>Singh, Sukhdev ; Arabi Belaghi, Reza ; Noori Asl, Mehri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2a30a68f551dbc7932995e8b4308715d382fe886b80441beb027caf160f211e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Economics</topic><topic>Estimates</topic><topic>Fisher information</topic><topic>Importance sampling</topic><topic>Logistics</topic><topic>Marketing</topic><topic>Maximization</topic><topic>Maximum likelihood estimators</topic><topic>Optimization</topic><topic>Organization</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Quality Control</topic><topic>Regression analysis</topic><topic>Reliability</topic><topic>Safety and Risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Sukhdev</creatorcontrib><creatorcontrib>Arabi Belaghi, Reza</creatorcontrib><creatorcontrib>Noori Asl, Mehri</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of system assurance engineering and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Sukhdev</au><au>Arabi Belaghi, Reza</au><au>Noori Asl, Mehri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring</atitle><jtitle>International journal of system assurance engineering and management</jtitle><stitle>Int J Syst Assur Eng Manag</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>10</volume><issue>4</issue><spage>746</spage><epage>764</epage><pages>746-764</pages><issn>0975-6809</issn><eissn>0976-4348</eissn><abstract>In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s13198-019-00806-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6989-9267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-6809
ispartof International journal of system assurance engineering and management, 2019-08, Vol.10 (4), p.746-764
issn 0975-6809
0976-4348
language eng
recordid cdi_proquest_journals_2296717446
source Springer Nature - Complete Springer Journals
subjects Algorithms
Bayesian analysis
Computer simulation
Engineering
Engineering Economics
Estimates
Fisher information
Importance sampling
Logistics
Marketing
Maximization
Maximum likelihood estimators
Optimization
Organization
Original Article
Parameter estimation
Quality Control
Regression analysis
Reliability
Safety and Risk
title Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20prediction%20using%20classical%20and%20Bayesian%20approaches%20for%20Burr%20III%20model%20under%20progressive%20type-I%20hybrid%20censoring&rft.jtitle=International%20journal%20of%20system%20assurance%20engineering%20and%20management&rft.au=Singh,%20Sukhdev&rft.date=2019-08-01&rft.volume=10&rft.issue=4&rft.spage=746&rft.epage=764&rft.pages=746-764&rft.issn=0975-6809&rft.eissn=0976-4348&rft_id=info:doi/10.1007/s13198-019-00806-9&rft_dat=%3Cproquest_cross%3E2296717446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296717446&rft_id=info:pmid/&rfr_iscdi=true