Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring

In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expecta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of system assurance engineering and management 2019-08, Vol.10 (4), p.746-764
Hauptverfasser: Singh, Sukhdev, Arabi Belaghi, Reza, Noori Asl, Mehri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.
ISSN:0975-6809
0976-4348
DOI:10.1007/s13198-019-00806-9