Features of the Current Sustainment in a Low-Current Discharge in Airflow

The paper relates to the investigations of a low-current discharge in a vortex airflow with the electrode configuration corresponding to classical coaxial plasmatron. The gas flow rate is varied from 0.1 to 0.3 g/s at an inner diameter of the plasmatron nozzle of 5 mm. The discharge is powered by dc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma chemistry and plasma processing 2019-11, Vol.39 (6), p.1519-1532
Hauptverfasser: Korolev, Y. D., Nekhoroshev, V. O., Frants, O. B., Landl, N. V., Suslov, A. I., Bolotov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper relates to the investigations of a low-current discharge in a vortex airflow with the electrode configuration corresponding to classical coaxial plasmatron. The gas flow rate is varied from 0.1 to 0.3 g/s at an inner diameter of the plasmatron nozzle of 5 mm. The discharge is powered by dc voltage via a ballast resistor. Typical averaged current is changed from 0.06 to 0.15 A so that a maximum averaged power dissipated in the discharge amounts to 160 W. In these conditions, a luminous gas region at the plasmatron exit, which in most publications is associated with a plasma jet, is observed. The method for the jet diagnostics based on a usage of the additional electrodes at the plasmatron exit has been proposed. The main idea of the experiments is the elucidation of the problem whether the jet actually represents the plasma area or we have to apply the term “plasma” with care. In particular, in the case under discussion the main charged particles in the jet are electrons that are emitted from a plasma column located in the plasmatron nozzle. The model that describes the formation of electron flow in the jet has been proposed. Typical electron density in the jet estimated with a usage of the model is at a level of 10 9 cm −3 .
ISSN:0272-4324
1572-8986
DOI:10.1007/s11090-019-10016-7