Simple and fast approximations for generalized stochastic Petri nets

A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of systems and software 1993-05, Vol.21 (2), p.163-177
Hauptverfasser: von Mayrhauser, A., Dube, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.
ISSN:0164-1212
1873-1228
DOI:10.1016/0164-1212(93)90039-Z