Evaluation of Coherence Between ECG and PPG Derived Parameters on Heart Rate Variability and Respiration in Healthy Volunteers With/Without Controlled Breathing

Introduction Photoplethysmography (PPG) is used as a surrogate of electrocardiograms (ECG) for heart rate variability (HRV) analysis or respiratory rate monitoring. PPG is a more convenient way to measure HRV than ECG at rest, since respiration could be a confounding factor in HRV evaluation. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical and biological engineering 2019-10, Vol.39 (5), p.783-795
Hauptverfasser: Jan, Hao-Yu, Chen, Mei-Fen, Fu, Tieh-Cheng, Lin, Wen-Chen, Tsai, Cheng-Lun, Lin, Kang-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Photoplethysmography (PPG) is used as a surrogate of electrocardiograms (ECG) for heart rate variability (HRV) analysis or respiratory rate monitoring. PPG is a more convenient way to measure HRV than ECG at rest, since respiration could be a confounding factor in HRV evaluation. However, it remains unclear whether or not controlled breathing affects breath-volume and breathing rate when HRV and pulse rate variability (PRV) are measured in different situations. Consciously controlled breathing was performed to alter the autonomic nervous states of subjects caused by respiratory sinus arrhythmia (RSA). The aim of this study was to investigate the coherence between parameters derived from ECG and PPG on healthy subjects with/without controlled breathing. Method With 30 healthy volunteers, we measured their respiratory frequency and recorded their ECG and PPG signals during spontaneous breathing and controlled breathing, including natural paced breathing, rapid and deep breathing, slow and deep breathing, rapid and shallow breathing, and slow and shallow breathing. Results Obvious coherence was observed between pulse rate and heart rate in both spontaneous breathing and controlled breathing tasks. However, a comparison of PRV and HRV indices demonstrated significant differences during controlled breathing. The results based on time domain and nonlinear method analysis showed that the frequency-dependent changes have more of an impact. The results also indicated that breathing corresponded well in ECG-derived parameters comparing with PPG-derived ones. Conclusion We concluded that PPG-based devices cannot be applied as a precision screening tool to detect HRV, particularly during the cardiopulmonary analysis for the controlled breathing maneuver.
ISSN:1609-0985
2199-4757
DOI:10.1007/s40846-019-00468-9