The Permutable k-means for the Bi-Partial Criterion
The bi-partial criterion for clustering problem consists of two parts, where the first one takes into account intra-cluster relations, and the second - inter-cluster ones. In the case of k-means algorithm, such bi-partial criterion combines intra-cluster dispersion with inter-cluster similarity, to...
Gespeichert in:
Veröffentlicht in: | Informatica (Ljubljana) 2019-06, Vol.43 (2), p.253-262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bi-partial criterion for clustering problem consists of two parts, where the first one takes into account intra-cluster relations, and the second - inter-cluster ones. In the case of k-means algorithm, such bi-partial criterion combines intra-cluster dispersion with inter-cluster similarity, to be jointly minimized. The first part only of such objective function provides the "standard" quality of clustering based on distances between objects (the well-known classical k-means). To improve the clustering quality based on the bi-partial objective function, we develop the permutable version of k-means algorithm. This paper shows that the permutable k-means appears to be a new type of a clustering procedure. |
---|---|
ISSN: | 0350-5596 1854-3871 |
DOI: | 10.31449/inf.v43i2.2090 |