The Permutable k-means for the Bi-Partial Criterion

The bi-partial criterion for clustering problem consists of two parts, where the first one takes into account intra-cluster relations, and the second - inter-cluster ones. In the case of k-means algorithm, such bi-partial criterion combines intra-cluster dispersion with inter-cluster similarity, to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatica (Ljubljana) 2019-06, Vol.43 (2), p.253-262
Hauptverfasser: Dvoenko, Serge D., Owsinski, Jan W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bi-partial criterion for clustering problem consists of two parts, where the first one takes into account intra-cluster relations, and the second - inter-cluster ones. In the case of k-means algorithm, such bi-partial criterion combines intra-cluster dispersion with inter-cluster similarity, to be jointly minimized. The first part only of such objective function provides the "standard" quality of clustering based on distances between objects (the well-known classical k-means). To improve the clustering quality based on the bi-partial objective function, we develop the permutable version of k-means algorithm. This paper shows that the permutable k-means appears to be a new type of a clustering procedure.
ISSN:0350-5596
1854-3871
DOI:10.31449/inf.v43i2.2090