Mesh adaptive direct search with simplicial Hessian update

Recently a second directional derivative-based Hessian updating formula was used for Hessian approximation in mesh adaptive direct search (MADS). The approach combined with a quadratic program solver significantly improves the performance of MADS. Unfortunately it imposes some strict requirements on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2019-12, Vol.74 (3), p.645-667
Hauptverfasser: Bűrmen, Árpád, Fajfar, Iztok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently a second directional derivative-based Hessian updating formula was used for Hessian approximation in mesh adaptive direct search (MADS). The approach combined with a quadratic program solver significantly improves the performance of MADS. Unfortunately it imposes some strict requirements on the position of points and the order in which they are evaluated. The subject of this paper is the introduction of a Hessian update formula that utilizes the points from the neighborhood of the incumbent solution without imposing such strict restrictions. The obtained approximate Hessian can then be used for constructing a quadratic model of the objective and the constraints. The proposed algorithm was compared to the reference implementation of MADS (NOMAD) on four sets of test problems. On all but one of them it outperformed NOMAD. The biggest performance difference was observed on constrained problems. To validate the algorithm further the approach was tested on several real-world optimization problems arising from yield approximation and worst case analysis in integrated circuit design. On all tested problems the proposed approach outperformed NOMAD.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-019-00133-6