The abundance and larval performance of Aedes phoeniciae in supralittoral rock-pools

The mosquito Aedes phoeniciae is a potential disease vector that inhabits the coastal rock-pools of the Southeastern Mediterranean Sea. Our year-long study examined the abundance and distribution of Ae. phoeniciae in 49 rock-pools along HaBonim Beach Nature Reserve (Israeli coast) on a monthly basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2019-12, Vol.846 (1), p.181-192
Hauptverfasser: Rosenfeld, Sahar, Blaustein, Leon, Kneitel, Jamie, Duchet, Claire, Horwitz, Rael, Rybak, Olga, Polevikov, Antonina, Rahav, Eyal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mosquito Aedes phoeniciae is a potential disease vector that inhabits the coastal rock-pools of the Southeastern Mediterranean Sea. Our year-long study examined the abundance and distribution of Ae. phoeniciae in 49 rock-pools along HaBonim Beach Nature Reserve (Israeli coast) on a monthly basis (September 2016 to August 2017). Additionally, the physical, chemical, and biological characteristics of the rock-pools were measured. Our results showed a correlation between the abundance of Ae. phoeniciae and abiotic (salinity, pool volume, and pH) and biotic (bacterial, micro-phytoplankton, and chironomid abundance) characteristics. A complementary experiment was conducted to examine the role of bacteria and phytoplankton on Ae. phoeniciae larval performance by rearing larvae in seawater (SW) or seawater without microbes (FSW, 0.2-µm). Ae. phoeniciae grown in SW exhibited a high survivorship rate (~ 77%), while lower survivorship rate was measured in the FSW treatments (~ 45%). Furthermore, a higher number of adult females were found in the SW compared to FSW treatments (35 and 11, respectively), while the number of male adults remained similar. Our results suggest that Ae. phoeniciae larvae rely on the water characteristics and especially on the microbial communities that habitat the rock-pools. These results may enable improved mosquito control of Ae. phoeniciae along the Southeastern Mediterranean Sea.
ISSN:0018-8158
1573-5117
DOI:10.1007/s10750-019-04063-6