Monolithic Dual‐Material 3D Printing of Ionic Skins with Long‐Term Performance Stability

Artificial “ionic skin” is of great interest for mimicking the functionality of human skin, such as subtle pressure sensing. However, the development of ionic skin is hindered by the strict requirements of device integration and the need for devices with satisfactory performance. Here, a dual‐materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-09, Vol.29 (39), p.n/a
Hauptverfasser: Yin, Xiang‐Yu, Zhang, Yue, Xiao, Junfeng, Moorlag, Carolyn, Yang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial “ionic skin” is of great interest for mimicking the functionality of human skin, such as subtle pressure sensing. However, the development of ionic skin is hindered by the strict requirements of device integration and the need for devices with satisfactory performance. Here, a dual‐material printing strategy for ionic skin fabrication to eliminate signal drift and performance degradation during long‐term use is proposed, while endowing the ionic skins with high sensitivity by 3D printing of ionic hydrogel electrodes with microstructures. The ionic skins are fabricated by alternative digital light processing 3D printing of two photocurable precursors: hydrogel and water‐dilutable polyurethane acrylate (WPUA), in which the ionically conductive hydrogel layers serve as soft, transparent electrodes and the electrically insulated WPUA as flexible, transparent dielectric layers. This novel dual‐material printing strategy enables strong chemical bonding between the hydrogel and the WPUA, endowing the device with designed characteristics. The resulting device has high sensitivity, minimal hysteresis, a response time in the millisecond range, and excellent repetition durability for pressure sensing. The results demonstrate the potential of the dual‐material 3D printing strategy as a pathway to realize highly stable and high‐performance ionic skin fabrication to monitor human physiological signals and human–machine interactions. A dual‐material printing strategy is proposed for ionic skin fabrication to eliminate signal drift and performance degradation during long‐term use, while endowing the ionic skins with high sensitivity, by 3D printing ionic hydrogel electrodes with microstructures.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201904716