On multistochastic Monge–Kantorovich problem, bitwise operations, and fractals
The multistochastic ( n , k )-Monge–Kantorovich problem on a product space ∏ i = 1 n X i is an extension of the classical Monge–Kantorovich problem. This problem is considered on the space of measures with fixed projections onto X i 1 × ⋯ × X i k for all k -tuples { i 1 , … , i k } ⊂ { 1 , … , n }...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2019-10, Vol.58 (5), p.1-33, Article 173 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The multistochastic (
n
,
k
)-Monge–Kantorovich problem on a product space
∏
i
=
1
n
X
i
is an extension of the classical Monge–Kantorovich problem. This problem is considered on the space of measures with fixed projections onto
X
i
1
×
⋯
×
X
i
k
for all
k
-tuples
{
i
1
,
…
,
i
k
}
⊂
{
1
,
…
,
n
}
for a given
1
≤
k
<
n
. In our paper we study well-posedness of the primal and the corresponding dual problem. Our central result describes a solution
π
to the following important model case:
n
=
3
,
k
=
2
,
X
i
=
[
0
,
1
]
, the cost function
c
(
x
,
y
,
z
)
=
x
y
z
, and the corresponding two-dimensional projections are Lebesgue measures on
[
0
,
1
]
2
. We prove, in particular, that the mapping
(
x
,
y
)
→
x
⊕
y
, where
⊕
is the bitwise addition (xor- or Nim-addition) on
[
0
,
1
]
≅
Z
2
∞
, is the corresponding optimal transportation. In particular, the support of
π
is the Sierpiński tetrahedron. In addition, we describe a solution to the corresponding dual problem. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-019-1610-4 |