Weighted Parameter Estimation for Hammerstein Nonlinear ARX Systems

This paper proposes parameter estimation algorithms for Hammerstein nonlinear ARX systems. By making full use of the current and previous input–output data of the system, a weighted multi-innovation stochastic gradient algorithm is presented to improve the convergence rate of identification. The inn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2020-04, Vol.39 (4), p.2178-2192
Hauptverfasser: Ding, Jie, Cao, Zhengxin, Chen, Jiazhong, Jiang, Guoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes parameter estimation algorithms for Hammerstein nonlinear ARX systems. By making full use of the current and previous input–output data of the system, a weighted multi-innovation stochastic gradient algorithm is presented to improve the convergence rate of identification. The innovation term in the traditional identification algorithms can be treated as a particle in the particle-filtering technique, and the weight of each innovation then can be computed according to their importance. The simulation results indicate that the algorithm can improve the accuracy of parameter estimation.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-019-01261-4