Weighted Parameter Estimation for Hammerstein Nonlinear ARX Systems
This paper proposes parameter estimation algorithms for Hammerstein nonlinear ARX systems. By making full use of the current and previous input–output data of the system, a weighted multi-innovation stochastic gradient algorithm is presented to improve the convergence rate of identification. The inn...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2020-04, Vol.39 (4), p.2178-2192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes parameter estimation algorithms for Hammerstein nonlinear ARX systems. By making full use of the current and previous input–output data of the system, a weighted multi-innovation stochastic gradient algorithm is presented to improve the convergence rate of identification. The innovation term in the traditional identification algorithms can be treated as a particle in the particle-filtering technique, and the weight of each innovation then can be computed according to their importance. The simulation results indicate that the algorithm can improve the accuracy of parameter estimation. |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-019-01261-4 |